Simplified Expressions of the Multi-Indexed Laguerre and Jacobi Polynomials
The multi-indexed Laguerre and Jacobi polynomials form a complete set of orthogonal polynomials. They satisfy second-order differential equations but not three term recurrence relations, because of the 'holes' in their degrees. The multi-indexed Laguerre and Jacobi polynomials have Wronski...
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2017
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148580 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Simplified Expressions of the Multi-Indexed Laguerre and Jacobi Polynomials / S. Odake, R. Sasaki // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 24 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The multi-indexed Laguerre and Jacobi polynomials form a complete set of orthogonal polynomials. They satisfy second-order differential equations but not three term recurrence relations, because of the 'holes' in their degrees. The multi-indexed Laguerre and Jacobi polynomials have Wronskian expressions originating from multiple Darboux transformations. For the ease of applications, two different forms of simplified expressions of the multi-indexed Laguerre and Jacobi polynomials are derived based on various identities. The parity transformation property of the multi-indexed Jacobi polynomials is derived based on that of the Jacobi polynomial. |
---|