Check-Operators and Quantum Spectral Curves

We review the basic properties of effective actions of families of theories (i.e., the actions depending on additional non-perturbative moduli along with perturbative couplings), and their description in terms of operators (called check-operators), which act on the moduli space. It is this approach...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Mironov, A., Morozov, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148583
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Check-Operators and Quantum Spectral Curves / A. Mironov, // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 123 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148583
record_format dspace
spelling irk-123456789-1485832019-02-19T01:29:10Z Check-Operators and Quantum Spectral Curves Mironov, A. Morozov, A. We review the basic properties of effective actions of families of theories (i.e., the actions depending on additional non-perturbative moduli along with perturbative couplings), and their description in terms of operators (called check-operators), which act on the moduli space. It is this approach that led to constructing the (quantum) spectral curves and what is now nicknamed the EO/AMM topological recursion. We explain how the non-commutative algebra of check-operators is related to the modular kernels and how symplectic (special) geometry emerges from it in the classical (Seiberg-Witten) limit, where the quantum integrable structures turn into the well studied classical integrability. As time goes, these results turn applicable to more and more theories of physical importance, supporting the old idea that many universality classes of low-energy effective theories contain matrix model representatives. 2017 Article Check-Operators and Quantum Spectral Curves / A. Mironov, // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 123 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 14H70; 81R10; 81R12; 81T13 DOI:10.3842/SIGMA.2017.047 http://dspace.nbuv.gov.ua/handle/123456789/148583 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We review the basic properties of effective actions of families of theories (i.e., the actions depending on additional non-perturbative moduli along with perturbative couplings), and their description in terms of operators (called check-operators), which act on the moduli space. It is this approach that led to constructing the (quantum) spectral curves and what is now nicknamed the EO/AMM topological recursion. We explain how the non-commutative algebra of check-operators is related to the modular kernels and how symplectic (special) geometry emerges from it in the classical (Seiberg-Witten) limit, where the quantum integrable structures turn into the well studied classical integrability. As time goes, these results turn applicable to more and more theories of physical importance, supporting the old idea that many universality classes of low-energy effective theories contain matrix model representatives.
format Article
author Mironov, A.
Morozov, A.
spellingShingle Mironov, A.
Morozov, A.
Check-Operators and Quantum Spectral Curves
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Mironov, A.
Morozov, A.
author_sort Mironov, A.
title Check-Operators and Quantum Spectral Curves
title_short Check-Operators and Quantum Spectral Curves
title_full Check-Operators and Quantum Spectral Curves
title_fullStr Check-Operators and Quantum Spectral Curves
title_full_unstemmed Check-Operators and Quantum Spectral Curves
title_sort check-operators and quantum spectral curves
publisher Інститут математики НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/148583
citation_txt Check-Operators and Quantum Spectral Curves / A. Mironov, // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 123 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT mironova checkoperatorsandquantumspectralcurves
AT morozova checkoperatorsandquantumspectralcurves
first_indexed 2023-05-20T17:30:52Z
last_indexed 2023-05-20T17:30:52Z
_version_ 1796153470347116544