Zero Range Process and Multi-Dimensional Random Walks

The special limit of the totally asymmetric zero range process of the low-dimensional non-equilibrium statistical mechanics described by the non-Hermitian Hamiltonian is considered. The calculation of the conditional probabilities of the model are based on the algebraic Bethe ansatz approach. We dem...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Bogoliubov, N.M., Malyshev, C.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148588
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Zero Range Process and Multi-Dimensional Random Walks / N.M Bogoliubov, C. Malyshev // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 32 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148588
record_format dspace
spelling irk-123456789-1485882019-02-19T01:31:30Z Zero Range Process and Multi-Dimensional Random Walks Bogoliubov, N.M. Malyshev, C. The special limit of the totally asymmetric zero range process of the low-dimensional non-equilibrium statistical mechanics described by the non-Hermitian Hamiltonian is considered. The calculation of the conditional probabilities of the model are based on the algebraic Bethe ansatz approach. We demonstrate that the conditional probabilities may be considered as the generating functions of the random multi-dimensional lattice walks bounded by a hyperplane. This type of walks we call the walks over the multi-dimensional simplicial lattices. The answers for the conditional probability and for the number of random walks in the multi-dimensional simplicial lattice are expressed through the symmetric functions. 2017 Article Zero Range Process and Multi-Dimensional Random Walks / N.M Bogoliubov, C. Malyshev // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 32 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 05A19; 05E05; 82B23 DOI:10.3842/SIGMA.2017.056 http://dspace.nbuv.gov.ua/handle/123456789/148588 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The special limit of the totally asymmetric zero range process of the low-dimensional non-equilibrium statistical mechanics described by the non-Hermitian Hamiltonian is considered. The calculation of the conditional probabilities of the model are based on the algebraic Bethe ansatz approach. We demonstrate that the conditional probabilities may be considered as the generating functions of the random multi-dimensional lattice walks bounded by a hyperplane. This type of walks we call the walks over the multi-dimensional simplicial lattices. The answers for the conditional probability and for the number of random walks in the multi-dimensional simplicial lattice are expressed through the symmetric functions.
format Article
author Bogoliubov, N.M.
Malyshev, C.
spellingShingle Bogoliubov, N.M.
Malyshev, C.
Zero Range Process and Multi-Dimensional Random Walks
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Bogoliubov, N.M.
Malyshev, C.
author_sort Bogoliubov, N.M.
title Zero Range Process and Multi-Dimensional Random Walks
title_short Zero Range Process and Multi-Dimensional Random Walks
title_full Zero Range Process and Multi-Dimensional Random Walks
title_fullStr Zero Range Process and Multi-Dimensional Random Walks
title_full_unstemmed Zero Range Process and Multi-Dimensional Random Walks
title_sort zero range process and multi-dimensional random walks
publisher Інститут математики НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/148588
citation_txt Zero Range Process and Multi-Dimensional Random Walks / N.M Bogoliubov, C. Malyshev // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 32 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT bogoliubovnm zerorangeprocessandmultidimensionalrandomwalks
AT malyshevc zerorangeprocessandmultidimensionalrandomwalks
first_indexed 2023-05-20T17:30:53Z
last_indexed 2023-05-20T17:30:53Z
_version_ 1796153470662737920