G-Invariant Deformations of Almost-Coupling Poisson Structures

On a foliated manifold equipped with an action of a compact Lie group G, we study a class of almost-coupling Poisson and Dirac structures, in the context of deformation theory and the method of averaging.

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Vallejo, J.A., Vorobiev, Y.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148597
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:G-Invariant Deformations of Almost-Coupling Poisson Structures / J.A. Vallejo, Y. Vorobiev // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 21 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148597
record_format dspace
spelling irk-123456789-1485972019-02-19T01:29:14Z G-Invariant Deformations of Almost-Coupling Poisson Structures Vallejo, J.A. Vorobiev, Y. On a foliated manifold equipped with an action of a compact Lie group G, we study a class of almost-coupling Poisson and Dirac structures, in the context of deformation theory and the method of averaging. 2017 Article G-Invariant Deformations of Almost-Coupling Poisson Structures / J.A. Vallejo, Y. Vorobiev // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 21 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53D17; 70G45; 58H15 DOI:10.3842/SIGMA.2014.021 http://dspace.nbuv.gov.ua/handle/123456789/148597 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description On a foliated manifold equipped with an action of a compact Lie group G, we study a class of almost-coupling Poisson and Dirac structures, in the context of deformation theory and the method of averaging.
format Article
author Vallejo, J.A.
Vorobiev, Y.
spellingShingle Vallejo, J.A.
Vorobiev, Y.
G-Invariant Deformations of Almost-Coupling Poisson Structures
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Vallejo, J.A.
Vorobiev, Y.
author_sort Vallejo, J.A.
title G-Invariant Deformations of Almost-Coupling Poisson Structures
title_short G-Invariant Deformations of Almost-Coupling Poisson Structures
title_full G-Invariant Deformations of Almost-Coupling Poisson Structures
title_fullStr G-Invariant Deformations of Almost-Coupling Poisson Structures
title_full_unstemmed G-Invariant Deformations of Almost-Coupling Poisson Structures
title_sort g-invariant deformations of almost-coupling poisson structures
publisher Інститут математики НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/148597
citation_txt G-Invariant Deformations of Almost-Coupling Poisson Structures / J.A. Vallejo, Y. Vorobiev // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 21 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT vallejoja ginvariantdeformationsofalmostcouplingpoissonstructures
AT vorobievy ginvariantdeformationsofalmostcouplingpoissonstructures
first_indexed 2023-05-20T17:30:12Z
last_indexed 2023-05-20T17:30:12Z
_version_ 1796153440740573184