On Toric Poisson Structures of Type (1,1) and their Cohomology

We classify real Poisson structures on complex toric manifolds of type (1,1) and initiate an investigation of their Poisson cohomology. For smooth toric varieties, such structures are necessarily algebraic and are homogeneous quadratic in each of the distinguished holomorphic coordinate charts deter...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Caine, A., Givens, B.N.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148600
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On Toric Poisson Structures of Type (1,1) and their Cohomology / A. Caine, B.N. Givens // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148600
record_format dspace
spelling irk-123456789-1486002019-02-19T01:28:36Z On Toric Poisson Structures of Type (1,1) and their Cohomology Caine, A. Givens, B.N. We classify real Poisson structures on complex toric manifolds of type (1,1) and initiate an investigation of their Poisson cohomology. For smooth toric varieties, such structures are necessarily algebraic and are homogeneous quadratic in each of the distinguished holomorphic coordinate charts determined by the open cones of the associated simplicial fan. As an approximation to the smooth cohomology problem in each Cn chart, we consider the Poisson differential on the complex of polynomial multi-vector fields. For the algebraic problem, we compute H⁰ and H¹ under the assumption that the Poisson structure is generically non-degenerate. The paper concludes with numerical investigations of the higher degree cohomology groups of (C²,πB) for various B. 2017 Article On Toric Poisson Structures of Type (1,1) and their Cohomology / A. Caine, B.N. Givens // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 8 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53D17; 37J15 DOI:10.3842/SIGMA.2017.023 http://dspace.nbuv.gov.ua/handle/123456789/148600 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We classify real Poisson structures on complex toric manifolds of type (1,1) and initiate an investigation of their Poisson cohomology. For smooth toric varieties, such structures are necessarily algebraic and are homogeneous quadratic in each of the distinguished holomorphic coordinate charts determined by the open cones of the associated simplicial fan. As an approximation to the smooth cohomology problem in each Cn chart, we consider the Poisson differential on the complex of polynomial multi-vector fields. For the algebraic problem, we compute H⁰ and H¹ under the assumption that the Poisson structure is generically non-degenerate. The paper concludes with numerical investigations of the higher degree cohomology groups of (C²,πB) for various B.
format Article
author Caine, A.
Givens, B.N.
spellingShingle Caine, A.
Givens, B.N.
On Toric Poisson Structures of Type (1,1) and their Cohomology
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Caine, A.
Givens, B.N.
author_sort Caine, A.
title On Toric Poisson Structures of Type (1,1) and their Cohomology
title_short On Toric Poisson Structures of Type (1,1) and their Cohomology
title_full On Toric Poisson Structures of Type (1,1) and their Cohomology
title_fullStr On Toric Poisson Structures of Type (1,1) and their Cohomology
title_full_unstemmed On Toric Poisson Structures of Type (1,1) and their Cohomology
title_sort on toric poisson structures of type (1,1) and their cohomology
publisher Інститут математики НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/148600
citation_txt On Toric Poisson Structures of Type (1,1) and their Cohomology / A. Caine, B.N. Givens // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 8 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT cainea ontoricpoissonstructuresoftype11andtheircohomology
AT givensbn ontoricpoissonstructuresoftype11andtheircohomology
first_indexed 2023-05-20T17:30:13Z
last_indexed 2023-05-20T17:30:13Z
_version_ 1796153441060388864