Symmetries of the Space of Linear Symplectic Connections

There is constructed a family of Lie algebras that act in a Hamiltonian way on the symplectic affine space of linear symplectic connections on a symplectic manifold. The associated equivariant moment map is a formal sum of the Cahen-Gutt moment map, the Ricci tensor, and a translational term. The cr...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автор: Fox, D.J.F.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148602
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Symmetries of the Space of Linear Symplectic Connections / D.J.F. Fox // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148602
record_format dspace
spelling irk-123456789-1486022019-02-19T01:24:24Z Symmetries of the Space of Linear Symplectic Connections Fox, D.J.F. There is constructed a family of Lie algebras that act in a Hamiltonian way on the symplectic affine space of linear symplectic connections on a symplectic manifold. The associated equivariant moment map is a formal sum of the Cahen-Gutt moment map, the Ricci tensor, and a translational term. The critical points of a functional constructed from it interpolate between the equations for preferred symplectic connections and the equations for critical symplectic connections. The commutative algebra of formal sums of symmetric tensors on a symplectic manifold carries a pair of compatible Poisson structures, one induced from the canonical Poisson bracket on the space of functions on the cotangent bundle polynomial in the fibers, and the other induced from the algebraic fiberwise Schouten bracket on the symmetric algebra of each fiber of the cotangent bundle. These structures are shown to be compatible, and the required Lie algebras are constructed as central extensions of their linear combinations restricted to formal sums of symmetric tensors whose first order term is a multiple of the differential of its zeroth order term. 2017 Article Symmetries of the Space of Linear Symplectic Connections / D.J.F. Fox // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 20 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53D20; 53D05; 53C05; 17B99 DOI:10.3842/SIGMA.2017.002 http://dspace.nbuv.gov.ua/handle/123456789/148602 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description There is constructed a family of Lie algebras that act in a Hamiltonian way on the symplectic affine space of linear symplectic connections on a symplectic manifold. The associated equivariant moment map is a formal sum of the Cahen-Gutt moment map, the Ricci tensor, and a translational term. The critical points of a functional constructed from it interpolate between the equations for preferred symplectic connections and the equations for critical symplectic connections. The commutative algebra of formal sums of symmetric tensors on a symplectic manifold carries a pair of compatible Poisson structures, one induced from the canonical Poisson bracket on the space of functions on the cotangent bundle polynomial in the fibers, and the other induced from the algebraic fiberwise Schouten bracket on the symmetric algebra of each fiber of the cotangent bundle. These structures are shown to be compatible, and the required Lie algebras are constructed as central extensions of their linear combinations restricted to formal sums of symmetric tensors whose first order term is a multiple of the differential of its zeroth order term.
format Article
author Fox, D.J.F.
spellingShingle Fox, D.J.F.
Symmetries of the Space of Linear Symplectic Connections
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Fox, D.J.F.
author_sort Fox, D.J.F.
title Symmetries of the Space of Linear Symplectic Connections
title_short Symmetries of the Space of Linear Symplectic Connections
title_full Symmetries of the Space of Linear Symplectic Connections
title_fullStr Symmetries of the Space of Linear Symplectic Connections
title_full_unstemmed Symmetries of the Space of Linear Symplectic Connections
title_sort symmetries of the space of linear symplectic connections
publisher Інститут математики НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/148602
citation_txt Symmetries of the Space of Linear Symplectic Connections / D.J.F. Fox // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 20 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT foxdjf symmetriesofthespaceoflinearsymplecticconnections
first_indexed 2023-05-20T17:29:45Z
last_indexed 2023-05-20T17:29:45Z
_version_ 1796153421081870336