Doran-Harder-Thompson Conjecture via SYZ Mirror Symmetry: Elliptic Curves

We prove the Doran-Harder-Thompson conjecture in the case of elliptic curves by using ideas from SYZ mirror symmetry. The conjecture claims that when a Calabi-Yau manifold X degenerates to a union of two quasi-Fano manifolds (Tyurin degeneration), a mirror Calabi-Yau manifold of X can be constructed...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автор: Kanazawa, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148604
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Doran-Harder-Thompson Conjecture via SYZ Mirror Symmetry: Elliptic Curves / A. Kanazawa // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 21 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148604
record_format dspace
spelling irk-123456789-1486042019-02-19T01:29:07Z Doran-Harder-Thompson Conjecture via SYZ Mirror Symmetry: Elliptic Curves Kanazawa, A. We prove the Doran-Harder-Thompson conjecture in the case of elliptic curves by using ideas from SYZ mirror symmetry. The conjecture claims that when a Calabi-Yau manifold X degenerates to a union of two quasi-Fano manifolds (Tyurin degeneration), a mirror Calabi-Yau manifold of X can be constructed by gluing the two mirror Landau-Ginzburg models of the quasi-Fano manifolds. The two crucial ideas in our proof are to obtain a complex structure by gluing the underlying affine manifolds and to construct the theta functions from the Landau-Ginzburg superpotentials. 2017 Article Doran-Harder-Thompson Conjecture via SYZ Mirror Symmetry: Elliptic Curves / A. Kanazawa // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 21 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53D37; 14J33; 14J32; 14J45; 14D06 DOI:10.3842/SIGMA.2017.024 http://dspace.nbuv.gov.ua/handle/123456789/148604 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We prove the Doran-Harder-Thompson conjecture in the case of elliptic curves by using ideas from SYZ mirror symmetry. The conjecture claims that when a Calabi-Yau manifold X degenerates to a union of two quasi-Fano manifolds (Tyurin degeneration), a mirror Calabi-Yau manifold of X can be constructed by gluing the two mirror Landau-Ginzburg models of the quasi-Fano manifolds. The two crucial ideas in our proof are to obtain a complex structure by gluing the underlying affine manifolds and to construct the theta functions from the Landau-Ginzburg superpotentials.
format Article
author Kanazawa, A.
spellingShingle Kanazawa, A.
Doran-Harder-Thompson Conjecture via SYZ Mirror Symmetry: Elliptic Curves
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Kanazawa, A.
author_sort Kanazawa, A.
title Doran-Harder-Thompson Conjecture via SYZ Mirror Symmetry: Elliptic Curves
title_short Doran-Harder-Thompson Conjecture via SYZ Mirror Symmetry: Elliptic Curves
title_full Doran-Harder-Thompson Conjecture via SYZ Mirror Symmetry: Elliptic Curves
title_fullStr Doran-Harder-Thompson Conjecture via SYZ Mirror Symmetry: Elliptic Curves
title_full_unstemmed Doran-Harder-Thompson Conjecture via SYZ Mirror Symmetry: Elliptic Curves
title_sort doran-harder-thompson conjecture via syz mirror symmetry: elliptic curves
publisher Інститут математики НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/148604
citation_txt Doran-Harder-Thompson Conjecture via SYZ Mirror Symmetry: Elliptic Curves / A. Kanazawa // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 21 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT kanazawaa doranharderthompsonconjectureviasyzmirrorsymmetryellipticcurves
first_indexed 2023-05-20T17:30:13Z
last_indexed 2023-05-20T17:30:13Z
_version_ 1796153441272201216