Ermakov-Painlevé II Symmetry Reduction of a Korteweg Capillarity System

A class of nonlinear Schrödinger equations involving a triad of power law terms together with a de Broglie-Bohm potential is shown to admit symmetry reduction to a hybrid Ermakov-Painlevé II equation which is linked, in turn, to the integrable Painlevé XXXIV equation. A nonlinear Schrödinger encapsu...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Rogers, C., Clarkson, P.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148621
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Ermakov-Painlevé II Symmetry Reduction of a Korteweg Capillarity System / C. Rogers, P.A. Clarkson // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 92 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148621
record_format dspace
spelling irk-123456789-1486212019-02-19T01:26:12Z Ermakov-Painlevé II Symmetry Reduction of a Korteweg Capillarity System Rogers, C. Clarkson, P.A. A class of nonlinear Schrödinger equations involving a triad of power law terms together with a de Broglie-Bohm potential is shown to admit symmetry reduction to a hybrid Ermakov-Painlevé II equation which is linked, in turn, to the integrable Painlevé XXXIV equation. A nonlinear Schrödinger encapsulation of a Korteweg-type capillary system is thereby used in the isolation of such a Ermakov-Painlevé II reduction valid for a multi-parameter class of free energy functions. Iterated application of a Bäcklund transformation then allows the construction of novel classes of exact solutions of the nonlinear capillarity system in terms of Yablonskii-Vorob'ev polynomials or classical Airy functions. A Painlevé XXXIV equation is derived for the density in the capillarity system and seen to correspond to the symmetry reduction of its Bernoulli integral of motion. 2017 Article Ermakov-Painlevé II Symmetry Reduction of a Korteweg Capillarity System / C. Rogers, P.A. Clarkson // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 92 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 37J15; 37K10; 76B45; 76D45 DOI:10.3842/SIGMA.2017.018 http://dspace.nbuv.gov.ua/handle/123456789/148621 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A class of nonlinear Schrödinger equations involving a triad of power law terms together with a de Broglie-Bohm potential is shown to admit symmetry reduction to a hybrid Ermakov-Painlevé II equation which is linked, in turn, to the integrable Painlevé XXXIV equation. A nonlinear Schrödinger encapsulation of a Korteweg-type capillary system is thereby used in the isolation of such a Ermakov-Painlevé II reduction valid for a multi-parameter class of free energy functions. Iterated application of a Bäcklund transformation then allows the construction of novel classes of exact solutions of the nonlinear capillarity system in terms of Yablonskii-Vorob'ev polynomials or classical Airy functions. A Painlevé XXXIV equation is derived for the density in the capillarity system and seen to correspond to the symmetry reduction of its Bernoulli integral of motion.
format Article
author Rogers, C.
Clarkson, P.A.
spellingShingle Rogers, C.
Clarkson, P.A.
Ermakov-Painlevé II Symmetry Reduction of a Korteweg Capillarity System
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Rogers, C.
Clarkson, P.A.
author_sort Rogers, C.
title Ermakov-Painlevé II Symmetry Reduction of a Korteweg Capillarity System
title_short Ermakov-Painlevé II Symmetry Reduction of a Korteweg Capillarity System
title_full Ermakov-Painlevé II Symmetry Reduction of a Korteweg Capillarity System
title_fullStr Ermakov-Painlevé II Symmetry Reduction of a Korteweg Capillarity System
title_full_unstemmed Ermakov-Painlevé II Symmetry Reduction of a Korteweg Capillarity System
title_sort ermakov-painlevé ii symmetry reduction of a korteweg capillarity system
publisher Інститут математики НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/148621
citation_txt Ermakov-Painlevé II Symmetry Reduction of a Korteweg Capillarity System / C. Rogers, P.A. Clarkson // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 92 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT rogersc ermakovpainleveiisymmetryreductionofakortewegcapillaritysystem
AT clarksonpa ermakovpainleveiisymmetryreductionofakortewegcapillaritysystem
first_indexed 2023-05-20T17:30:15Z
last_indexed 2023-05-20T17:30:15Z
_version_ 1796153441700020224