Ermakov-Painlevé II Symmetry Reduction of a Korteweg Capillarity System
A class of nonlinear Schrödinger equations involving a triad of power law terms together with a de Broglie-Bohm potential is shown to admit symmetry reduction to a hybrid Ermakov-Painlevé II equation which is linked, in turn, to the integrable Painlevé XXXIV equation. A nonlinear Schrödinger encapsu...
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2017
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148621 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Ermakov-Painlevé II Symmetry Reduction of a Korteweg Capillarity System / C. Rogers, P.A. Clarkson // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 92 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148621 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1486212019-02-19T01:26:12Z Ermakov-Painlevé II Symmetry Reduction of a Korteweg Capillarity System Rogers, C. Clarkson, P.A. A class of nonlinear Schrödinger equations involving a triad of power law terms together with a de Broglie-Bohm potential is shown to admit symmetry reduction to a hybrid Ermakov-Painlevé II equation which is linked, in turn, to the integrable Painlevé XXXIV equation. A nonlinear Schrödinger encapsulation of a Korteweg-type capillary system is thereby used in the isolation of such a Ermakov-Painlevé II reduction valid for a multi-parameter class of free energy functions. Iterated application of a Bäcklund transformation then allows the construction of novel classes of exact solutions of the nonlinear capillarity system in terms of Yablonskii-Vorob'ev polynomials or classical Airy functions. A Painlevé XXXIV equation is derived for the density in the capillarity system and seen to correspond to the symmetry reduction of its Bernoulli integral of motion. 2017 Article Ermakov-Painlevé II Symmetry Reduction of a Korteweg Capillarity System / C. Rogers, P.A. Clarkson // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 92 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 37J15; 37K10; 76B45; 76D45 DOI:10.3842/SIGMA.2017.018 http://dspace.nbuv.gov.ua/handle/123456789/148621 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A class of nonlinear Schrödinger equations involving a triad of power law terms together with a de Broglie-Bohm potential is shown to admit symmetry reduction to a hybrid Ermakov-Painlevé II equation which is linked, in turn, to the integrable Painlevé XXXIV equation. A nonlinear Schrödinger encapsulation of a Korteweg-type capillary system is thereby used in the isolation of such a Ermakov-Painlevé II reduction valid for a multi-parameter class of free energy functions. Iterated application of a Bäcklund transformation then allows the construction of novel classes of exact solutions of the nonlinear capillarity system in terms of Yablonskii-Vorob'ev polynomials or classical Airy functions. A Painlevé XXXIV equation is derived for the density in the capillarity system and seen to correspond to the symmetry reduction of its Bernoulli integral of motion. |
format |
Article |
author |
Rogers, C. Clarkson, P.A. |
spellingShingle |
Rogers, C. Clarkson, P.A. Ermakov-Painlevé II Symmetry Reduction of a Korteweg Capillarity System Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Rogers, C. Clarkson, P.A. |
author_sort |
Rogers, C. |
title |
Ermakov-Painlevé II Symmetry Reduction of a Korteweg Capillarity System |
title_short |
Ermakov-Painlevé II Symmetry Reduction of a Korteweg Capillarity System |
title_full |
Ermakov-Painlevé II Symmetry Reduction of a Korteweg Capillarity System |
title_fullStr |
Ermakov-Painlevé II Symmetry Reduction of a Korteweg Capillarity System |
title_full_unstemmed |
Ermakov-Painlevé II Symmetry Reduction of a Korteweg Capillarity System |
title_sort |
ermakov-painlevé ii symmetry reduction of a korteweg capillarity system |
publisher |
Інститут математики НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148621 |
citation_txt |
Ermakov-Painlevé II Symmetry Reduction of a Korteweg Capillarity System / C. Rogers, P.A. Clarkson // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 92 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT rogersc ermakovpainleveiisymmetryreductionofakortewegcapillaritysystem AT clarksonpa ermakovpainleveiisymmetryreductionofakortewegcapillaritysystem |
first_indexed |
2023-05-20T17:30:15Z |
last_indexed |
2023-05-20T17:30:15Z |
_version_ |
1796153441700020224 |