Local Generalized Symmetries and Locally Symmetric Parabolic Geometries

We investigate (local) automorphisms of parabolic geometries that generalize geodesic symmetries. We show that many types of parabolic geometries admit at most one generalized geodesic symmetry at a point with non-zero harmonic curvature. Moreover, we show that if there is exactly one symmetry at ea...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Gregorovič, J., Zalabová, L.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148627
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Local Generalized Symmetries and Locally Symmetric Parabolic Geometries / J. Gregorovič, L. Zalabová // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 25 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148627
record_format dspace
spelling irk-123456789-1486272019-02-19T01:30:02Z Local Generalized Symmetries and Locally Symmetric Parabolic Geometries Gregorovič, J. Zalabová, L. We investigate (local) automorphisms of parabolic geometries that generalize geodesic symmetries. We show that many types of parabolic geometries admit at most one generalized geodesic symmetry at a point with non-zero harmonic curvature. Moreover, we show that if there is exactly one symmetry at each point, then the parabolic geometry is a generalization of an affine (locally) symmetric space. 2017 Article Local Generalized Symmetries and Locally Symmetric Parabolic Geometries / J. Gregorovič, L. Zalabová // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 25 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53C10; 53C22; 53C15; 53C05; 53B15; 53A55 DOI:10.3842/SIGMA.2017.032 http://dspace.nbuv.gov.ua/handle/123456789/148627 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We investigate (local) automorphisms of parabolic geometries that generalize geodesic symmetries. We show that many types of parabolic geometries admit at most one generalized geodesic symmetry at a point with non-zero harmonic curvature. Moreover, we show that if there is exactly one symmetry at each point, then the parabolic geometry is a generalization of an affine (locally) symmetric space.
format Article
author Gregorovič, J.
Zalabová, L.
spellingShingle Gregorovič, J.
Zalabová, L.
Local Generalized Symmetries and Locally Symmetric Parabolic Geometries
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Gregorovič, J.
Zalabová, L.
author_sort Gregorovič, J.
title Local Generalized Symmetries and Locally Symmetric Parabolic Geometries
title_short Local Generalized Symmetries and Locally Symmetric Parabolic Geometries
title_full Local Generalized Symmetries and Locally Symmetric Parabolic Geometries
title_fullStr Local Generalized Symmetries and Locally Symmetric Parabolic Geometries
title_full_unstemmed Local Generalized Symmetries and Locally Symmetric Parabolic Geometries
title_sort local generalized symmetries and locally symmetric parabolic geometries
publisher Інститут математики НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/148627
citation_txt Local Generalized Symmetries and Locally Symmetric Parabolic Geometries / J. Gregorovič, L. Zalabová // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 25 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT gregorovicj localgeneralizedsymmetriesandlocallysymmetricparabolicgeometries
AT zalaboval localgeneralizedsymmetriesandlocallysymmetricparabolicgeometries
first_indexed 2023-05-20T17:30:32Z
last_indexed 2023-05-20T17:30:32Z
_version_ 1796153459953631232