Local Generalized Symmetries and Locally Symmetric Parabolic Geometries
We investigate (local) automorphisms of parabolic geometries that generalize geodesic symmetries. We show that many types of parabolic geometries admit at most one generalized geodesic symmetry at a point with non-zero harmonic curvature. Moreover, we show that if there is exactly one symmetry at ea...
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2017
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148627 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Local Generalized Symmetries and Locally Symmetric Parabolic Geometries / J. Gregorovič, L. Zalabová // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 25 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148627 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1486272019-02-19T01:30:02Z Local Generalized Symmetries and Locally Symmetric Parabolic Geometries Gregorovič, J. Zalabová, L. We investigate (local) automorphisms of parabolic geometries that generalize geodesic symmetries. We show that many types of parabolic geometries admit at most one generalized geodesic symmetry at a point with non-zero harmonic curvature. Moreover, we show that if there is exactly one symmetry at each point, then the parabolic geometry is a generalization of an affine (locally) symmetric space. 2017 Article Local Generalized Symmetries and Locally Symmetric Parabolic Geometries / J. Gregorovič, L. Zalabová // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 25 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53C10; 53C22; 53C15; 53C05; 53B15; 53A55 DOI:10.3842/SIGMA.2017.032 http://dspace.nbuv.gov.ua/handle/123456789/148627 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We investigate (local) automorphisms of parabolic geometries that generalize geodesic symmetries. We show that many types of parabolic geometries admit at most one generalized geodesic symmetry at a point with non-zero harmonic curvature. Moreover, we show that if there is exactly one symmetry at each point, then the parabolic geometry is a generalization of an affine (locally) symmetric space. |
format |
Article |
author |
Gregorovič, J. Zalabová, L. |
spellingShingle |
Gregorovič, J. Zalabová, L. Local Generalized Symmetries and Locally Symmetric Parabolic Geometries Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Gregorovič, J. Zalabová, L. |
author_sort |
Gregorovič, J. |
title |
Local Generalized Symmetries and Locally Symmetric Parabolic Geometries |
title_short |
Local Generalized Symmetries and Locally Symmetric Parabolic Geometries |
title_full |
Local Generalized Symmetries and Locally Symmetric Parabolic Geometries |
title_fullStr |
Local Generalized Symmetries and Locally Symmetric Parabolic Geometries |
title_full_unstemmed |
Local Generalized Symmetries and Locally Symmetric Parabolic Geometries |
title_sort |
local generalized symmetries and locally symmetric parabolic geometries |
publisher |
Інститут математики НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148627 |
citation_txt |
Local Generalized Symmetries and Locally Symmetric Parabolic Geometries / J. Gregorovič, L. Zalabová // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 25 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT gregorovicj localgeneralizedsymmetriesandlocallysymmetricparabolicgeometries AT zalaboval localgeneralizedsymmetriesandlocallysymmetricparabolicgeometries |
first_indexed |
2023-05-20T17:30:32Z |
last_indexed |
2023-05-20T17:30:32Z |
_version_ |
1796153459953631232 |