Contact Isotropic Realisations of Jacobi Manifolds via Spencer Operators

Motivated by the importance of symplectic isotropic realisations in the study of Poisson manifolds, this paper investigates the local and global theory of contact isotropic realisations of Jacobi manifolds, which are those of minimal dimension. These arise naturally when considering multiplicity-fre...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Salazar, M.A., Sepe, D.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148630
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Contact Isotropic Realisations of Jacobi Manifolds via Spencer Operators / M.A. Salazar, D. Sepe // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 33 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148630
record_format dspace
spelling irk-123456789-1486302019-02-19T01:30:06Z Contact Isotropic Realisations of Jacobi Manifolds via Spencer Operators Salazar, M.A. Sepe, D. Motivated by the importance of symplectic isotropic realisations in the study of Poisson manifolds, this paper investigates the local and global theory of contact isotropic realisations of Jacobi manifolds, which are those of minimal dimension. These arise naturally when considering multiplicity-free actions in contact geometry, as shown in this paper. The main results concern a classification of these realisations up to a suitable notion of isomorphism, as well as establishing a relation between the existence of symplectic and contact isotropic realisations for Poisson manifolds. The main tool is the classical Spencer operator which is related to Jacobi structures via their associated Lie algebroid, which allows to generalise previous results as well as providing more conceptual proofs for existing ones. 2017 Article Contact Isotropic Realisations of Jacobi Manifolds via Spencer Operators / M.A. Salazar, D. Sepe // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 33 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53D10; 53D17; 53D20; 37J15 DOI:10.3842/SIGMA.2017.033 http://dspace.nbuv.gov.ua/handle/123456789/148630 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Motivated by the importance of symplectic isotropic realisations in the study of Poisson manifolds, this paper investigates the local and global theory of contact isotropic realisations of Jacobi manifolds, which are those of minimal dimension. These arise naturally when considering multiplicity-free actions in contact geometry, as shown in this paper. The main results concern a classification of these realisations up to a suitable notion of isomorphism, as well as establishing a relation between the existence of symplectic and contact isotropic realisations for Poisson manifolds. The main tool is the classical Spencer operator which is related to Jacobi structures via their associated Lie algebroid, which allows to generalise previous results as well as providing more conceptual proofs for existing ones.
format Article
author Salazar, M.A.
Sepe, D.
spellingShingle Salazar, M.A.
Sepe, D.
Contact Isotropic Realisations of Jacobi Manifolds via Spencer Operators
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Salazar, M.A.
Sepe, D.
author_sort Salazar, M.A.
title Contact Isotropic Realisations of Jacobi Manifolds via Spencer Operators
title_short Contact Isotropic Realisations of Jacobi Manifolds via Spencer Operators
title_full Contact Isotropic Realisations of Jacobi Manifolds via Spencer Operators
title_fullStr Contact Isotropic Realisations of Jacobi Manifolds via Spencer Operators
title_full_unstemmed Contact Isotropic Realisations of Jacobi Manifolds via Spencer Operators
title_sort contact isotropic realisations of jacobi manifolds via spencer operators
publisher Інститут математики НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/148630
citation_txt Contact Isotropic Realisations of Jacobi Manifolds via Spencer Operators / M.A. Salazar, D. Sepe // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 33 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT salazarma contactisotropicrealisationsofjacobimanifoldsviaspenceroperators
AT seped contactisotropicrealisationsofjacobimanifoldsviaspenceroperators
first_indexed 2023-05-20T17:30:32Z
last_indexed 2023-05-20T17:30:32Z
_version_ 1796153460268204032