Factor Ordering and Path Integral Measure for Quantum Gravity in (1+1) Dimensions
We develop a mathematically rigorous path integral representation of the time evolution operator for a model of (1+1) quantum gravity that incorporates factor ordering ambiguity. In obtaining a suitable integral kernel for the time-evolution operator, one requires that the corresponding Hamiltonian...
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2017
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148635 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Factor Ordering and Path Integral Measure for Quantum Gravity in (1+1) Dimensions / J. Haga, R.L. Maitra // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 35 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148635 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1486352019-02-19T01:31:27Z Factor Ordering and Path Integral Measure for Quantum Gravity in (1+1) Dimensions Haga, J. Maitra, R.L. We develop a mathematically rigorous path integral representation of the time evolution operator for a model of (1+1) quantum gravity that incorporates factor ordering ambiguity. In obtaining a suitable integral kernel for the time-evolution operator, one requires that the corresponding Hamiltonian is self-adjoint; this issue is subtle for a particular category of factor orderings. We identify and parametrize a complete set of self-adjoint extensions and provide a canonical description of these extensions in terms of boundary conditions. Moreover, we use Trotter-type product formulae to construct path-integral representations of time evolution. 2017 Article Factor Ordering and Path Integral Measure for Quantum Gravity in (1+1) Dimensions / J. Haga, R.L. Maitra // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 35 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 81V17; 81S40; 83C80 DOI:10.3842/SIGMA.2017.039 http://dspace.nbuv.gov.ua/handle/123456789/148635 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We develop a mathematically rigorous path integral representation of the time evolution operator for a model of (1+1) quantum gravity that incorporates factor ordering ambiguity. In obtaining a suitable integral kernel for the time-evolution operator, one requires that the corresponding Hamiltonian is self-adjoint; this issue is subtle for a particular category of factor orderings. We identify and parametrize a complete set of self-adjoint extensions and provide a canonical description of these extensions in terms of boundary conditions. Moreover, we use Trotter-type product formulae to construct path-integral representations of time evolution. |
format |
Article |
author |
Haga, J. Maitra, R.L. |
spellingShingle |
Haga, J. Maitra, R.L. Factor Ordering and Path Integral Measure for Quantum Gravity in (1+1) Dimensions Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Haga, J. Maitra, R.L. |
author_sort |
Haga, J. |
title |
Factor Ordering and Path Integral Measure for Quantum Gravity in (1+1) Dimensions |
title_short |
Factor Ordering and Path Integral Measure for Quantum Gravity in (1+1) Dimensions |
title_full |
Factor Ordering and Path Integral Measure for Quantum Gravity in (1+1) Dimensions |
title_fullStr |
Factor Ordering and Path Integral Measure for Quantum Gravity in (1+1) Dimensions |
title_full_unstemmed |
Factor Ordering and Path Integral Measure for Quantum Gravity in (1+1) Dimensions |
title_sort |
factor ordering and path integral measure for quantum gravity in (1+1) dimensions |
publisher |
Інститут математики НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148635 |
citation_txt |
Factor Ordering and Path Integral Measure for Quantum Gravity in (1+1) Dimensions / J. Haga, R.L. Maitra // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 35 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT hagaj factororderingandpathintegralmeasureforquantumgravityin11dimensions AT maitrarl factororderingandpathintegralmeasureforquantumgravityin11dimensions |
first_indexed |
2023-05-20T17:30:55Z |
last_indexed |
2023-05-20T17:30:55Z |
_version_ |
1796153460794589184 |