Mendeleev Table: a Proof of Madelung Rule and Atomic Tietz Potential
We prove that a neutral atom in mean-field approximation has O(4) symmetry and this fact explains the empirical [n+l,n]-rule or Madelung rule which describes effectively periods, structure and other properties of the Mendeleev table of chemical elements.
Збережено в:
Дата: | 2017 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2017
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148640 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Mendeleev Table: a Proof of Madelung Rule and Atomic Tietz Potential / E.D. Belokolos // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 34 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We prove that a neutral atom in mean-field approximation has O(4) symmetry and this fact explains the empirical [n+l,n]-rule or Madelung rule which describes effectively periods, structure and other properties of the Mendeleev table of chemical elements. |
---|