Highest ℓ-Weight Representations and Functional Relations

We discuss highest ℓ-weight representations of quantum loop algebras and the corresponding functional relations between integrability objects. In particular, we compare the prefundamental and q-oscillator representations of the positive Borel subalgebras of the quantum group Uq(L(sll₊₁)) for arbitra...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Nirov, K.S., Razumov, A.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148644
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Highest ℓ-Weight Representations and Functional Relations / K.S. Nirov, A.V. Razumov // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 40 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148644
record_format dspace
spelling irk-123456789-1486442019-02-19T01:31:51Z Highest ℓ-Weight Representations and Functional Relations Nirov, K.S. Razumov, A.V. We discuss highest ℓ-weight representations of quantum loop algebras and the corresponding functional relations between integrability objects. In particular, we compare the prefundamental and q-oscillator representations of the positive Borel subalgebras of the quantum group Uq(L(sll₊₁)) for arbitrary values of l. Our article has partially the nature of a short review, but it also contains new results. These are the expressions for the L-operators, and the exact relationship between different representations, as a byproduct resulting in certain conclusions about functional relations. 2017 Article Highest ℓ-Weight Representations and Functional Relations / K.S. Nirov, A.V. Razumov // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 40 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B37; 16T25; 17B10 DOI:10.3842/SIGMA.2017.043 http://dspace.nbuv.gov.ua/handle/123456789/148644 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We discuss highest ℓ-weight representations of quantum loop algebras and the corresponding functional relations between integrability objects. In particular, we compare the prefundamental and q-oscillator representations of the positive Borel subalgebras of the quantum group Uq(L(sll₊₁)) for arbitrary values of l. Our article has partially the nature of a short review, but it also contains new results. These are the expressions for the L-operators, and the exact relationship between different representations, as a byproduct resulting in certain conclusions about functional relations.
format Article
author Nirov, K.S.
Razumov, A.V.
spellingShingle Nirov, K.S.
Razumov, A.V.
Highest ℓ-Weight Representations and Functional Relations
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Nirov, K.S.
Razumov, A.V.
author_sort Nirov, K.S.
title Highest ℓ-Weight Representations and Functional Relations
title_short Highest ℓ-Weight Representations and Functional Relations
title_full Highest ℓ-Weight Representations and Functional Relations
title_fullStr Highest ℓ-Weight Representations and Functional Relations
title_full_unstemmed Highest ℓ-Weight Representations and Functional Relations
title_sort highest ℓ-weight representations and functional relations
publisher Інститут математики НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/148644
citation_txt Highest ℓ-Weight Representations and Functional Relations / K.S. Nirov, A.V. Razumov // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 40 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT nirovks highestlweightrepresentationsandfunctionalrelations
AT razumovav highestlweightrepresentationsandfunctionalrelations
first_indexed 2023-05-20T17:30:56Z
last_indexed 2023-05-20T17:30:56Z
_version_ 1796153461746696192