Highest ℓ-Weight Representations and Functional Relations
We discuss highest ℓ-weight representations of quantum loop algebras and the corresponding functional relations between integrability objects. In particular, we compare the prefundamental and q-oscillator representations of the positive Borel subalgebras of the quantum group Uq(L(sll₊₁)) for arbitra...
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2017
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148644 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Highest ℓ-Weight Representations and Functional Relations / K.S. Nirov, A.V. Razumov // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 40 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148644 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1486442019-02-19T01:31:51Z Highest ℓ-Weight Representations and Functional Relations Nirov, K.S. Razumov, A.V. We discuss highest ℓ-weight representations of quantum loop algebras and the corresponding functional relations between integrability objects. In particular, we compare the prefundamental and q-oscillator representations of the positive Borel subalgebras of the quantum group Uq(L(sll₊₁)) for arbitrary values of l. Our article has partially the nature of a short review, but it also contains new results. These are the expressions for the L-operators, and the exact relationship between different representations, as a byproduct resulting in certain conclusions about functional relations. 2017 Article Highest ℓ-Weight Representations and Functional Relations / K.S. Nirov, A.V. Razumov // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 40 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B37; 16T25; 17B10 DOI:10.3842/SIGMA.2017.043 http://dspace.nbuv.gov.ua/handle/123456789/148644 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We discuss highest ℓ-weight representations of quantum loop algebras and the corresponding functional relations between integrability objects. In particular, we compare the prefundamental and q-oscillator representations of the positive Borel subalgebras of the quantum group Uq(L(sll₊₁)) for arbitrary values of l. Our article has partially the nature of a short review, but it also contains new results. These are the expressions for the L-operators, and the exact relationship between different representations, as a byproduct resulting in certain conclusions about functional relations. |
format |
Article |
author |
Nirov, K.S. Razumov, A.V. |
spellingShingle |
Nirov, K.S. Razumov, A.V. Highest ℓ-Weight Representations and Functional Relations Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Nirov, K.S. Razumov, A.V. |
author_sort |
Nirov, K.S. |
title |
Highest ℓ-Weight Representations and Functional Relations |
title_short |
Highest ℓ-Weight Representations and Functional Relations |
title_full |
Highest ℓ-Weight Representations and Functional Relations |
title_fullStr |
Highest ℓ-Weight Representations and Functional Relations |
title_full_unstemmed |
Highest ℓ-Weight Representations and Functional Relations |
title_sort |
highest ℓ-weight representations and functional relations |
publisher |
Інститут математики НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148644 |
citation_txt |
Highest ℓ-Weight Representations and Functional Relations / K.S. Nirov, A.V. Razumov // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 40 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT nirovks highestlweightrepresentationsandfunctionalrelations AT razumovav highestlweightrepresentationsandfunctionalrelations |
first_indexed |
2023-05-20T17:30:56Z |
last_indexed |
2023-05-20T17:30:56Z |
_version_ |
1796153461746696192 |