Integrable Structure of Multispecies Zero Range Process

We present a brief review on integrability of multispecies zero range process in one dimension introduced recently. The topics range over stochastic R matrices of quantum affine algebra Uq(An⁽¹⁾), matrix product construction of stationary states for periodic systems, q-boson representation of Zamolo...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Kuniba, A., Okado, M., Watanabe, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148647
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Integrable Structure of Multispecies Zero Range Process / A. Kuniba, M. Okado, S. Watanabe // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 51 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We present a brief review on integrability of multispecies zero range process in one dimension introduced recently. The topics range over stochastic R matrices of quantum affine algebra Uq(An⁽¹⁾), matrix product construction of stationary states for periodic systems, q-boson representation of Zamolodchikov-Faddeev algebra, etc. We also introduce new commuting Markov transfer matrices having a mixed boundary condition and prove the factorization of a family of R matrices associated with the tetrahedron equation and generalized quantum groups at a special point of the spectral parameter.