Integrable Structure of Multispecies Zero Range Process
We present a brief review on integrability of multispecies zero range process in one dimension introduced recently. The topics range over stochastic R matrices of quantum affine algebra Uq(An⁽¹⁾), matrix product construction of stationary states for periodic systems, q-boson representation of Zamolo...
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2017
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148647 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Integrable Structure of Multispecies Zero Range Process / A. Kuniba, M. Okado, S. Watanabe // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 51 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148647 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1486472019-02-19T01:24:46Z Integrable Structure of Multispecies Zero Range Process Kuniba, A. Okado, M. Watanabe, S. We present a brief review on integrability of multispecies zero range process in one dimension introduced recently. The topics range over stochastic R matrices of quantum affine algebra Uq(An⁽¹⁾), matrix product construction of stationary states for periodic systems, q-boson representation of Zamolodchikov-Faddeev algebra, etc. We also introduce new commuting Markov transfer matrices having a mixed boundary condition and prove the factorization of a family of R matrices associated with the tetrahedron equation and generalized quantum groups at a special point of the spectral parameter. 2017 Article Integrable Structure of Multispecies Zero Range Process / A. Kuniba, M. Okado, S. Watanabe // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 51 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 81R50; 60C9 DOI:10.3842/SIGMA.2017.044 http://dspace.nbuv.gov.ua/handle/123456789/148647 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We present a brief review on integrability of multispecies zero range process in one dimension introduced recently. The topics range over stochastic R matrices of quantum affine algebra Uq(An⁽¹⁾), matrix product construction of stationary states for periodic systems, q-boson representation of Zamolodchikov-Faddeev algebra, etc. We also introduce new commuting Markov transfer matrices having a mixed boundary condition and prove the factorization of a family of R matrices associated with the tetrahedron equation and generalized quantum groups at a special point of the spectral parameter. |
format |
Article |
author |
Kuniba, A. Okado, M. Watanabe, S. |
spellingShingle |
Kuniba, A. Okado, M. Watanabe, S. Integrable Structure of Multispecies Zero Range Process Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Kuniba, A. Okado, M. Watanabe, S. |
author_sort |
Kuniba, A. |
title |
Integrable Structure of Multispecies Zero Range Process |
title_short |
Integrable Structure of Multispecies Zero Range Process |
title_full |
Integrable Structure of Multispecies Zero Range Process |
title_fullStr |
Integrable Structure of Multispecies Zero Range Process |
title_full_unstemmed |
Integrable Structure of Multispecies Zero Range Process |
title_sort |
integrable structure of multispecies zero range process |
publisher |
Інститут математики НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148647 |
citation_txt |
Integrable Structure of Multispecies Zero Range Process / A. Kuniba, M. Okado, S. Watanabe // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 51 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT kunibaa integrablestructureofmultispecieszerorangeprocess AT okadom integrablestructureofmultispecieszerorangeprocess AT watanabes integrablestructureofmultispecieszerorangeprocess |
first_indexed |
2023-05-20T17:30:57Z |
last_indexed |
2023-05-20T17:30:57Z |
_version_ |
1796153462069657600 |