Solutions of Helmholtz and Schrödinger Equations with Side Condition and Nonregular Separation of Variables

Olver and Rosenau studied group-invariant solutions of (generally nonlinear) partial differential equations through the imposition of a side condition. We apply a similar idea to the special case of finite-dimensional Hamiltonian systems, namely Hamilton-Jacobi, Helmholtz and time-independent Schröd...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Broadbridge, P., Chanu, C.M., Miller Jr., Willard
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148652
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Solutions of Helmholtz and Schrödinger Equations with Side Condition and Nonregular Separation of Variables / P. Broadbridge, C.M. Chanu, Willard Miller Jr. // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 36 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148652
record_format dspace
spelling irk-123456789-1486522019-02-19T01:24:52Z Solutions of Helmholtz and Schrödinger Equations with Side Condition and Nonregular Separation of Variables Broadbridge, P. Chanu, C.M. Miller Jr., Willard Olver and Rosenau studied group-invariant solutions of (generally nonlinear) partial differential equations through the imposition of a side condition. We apply a similar idea to the special case of finite-dimensional Hamiltonian systems, namely Hamilton-Jacobi, Helmholtz and time-independent Schrödinger equations with potential on N-dimensional Riemannian and pseudo-Riemannian manifolds, but with a linear side condition, where more structure is available. We show that the requirement of N−1 commuting second-order symmetry operators, modulo a second-order linear side condition corresponds to nonregular separation of variables in an orthogonal coordinate system, characterized by a generalized Stäckel matrix. The coordinates and solutions obtainable through true nonregular separation are distinct from those arising through regular separation of variables. We develop the theory for these systems and provide examples. 2012 Article Solutions of Helmholtz and Schrödinger Equations with Side Condition and Nonregular Separation of Variables / P. Broadbridge, C.M. Chanu, Willard Miller Jr. // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 36 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 35Q40; 35J05 DOI: http://dx.doi.org/10.3842/SIGMA.2012.089 http://dspace.nbuv.gov.ua/handle/123456789/148652 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Olver and Rosenau studied group-invariant solutions of (generally nonlinear) partial differential equations through the imposition of a side condition. We apply a similar idea to the special case of finite-dimensional Hamiltonian systems, namely Hamilton-Jacobi, Helmholtz and time-independent Schrödinger equations with potential on N-dimensional Riemannian and pseudo-Riemannian manifolds, but with a linear side condition, where more structure is available. We show that the requirement of N−1 commuting second-order symmetry operators, modulo a second-order linear side condition corresponds to nonregular separation of variables in an orthogonal coordinate system, characterized by a generalized Stäckel matrix. The coordinates and solutions obtainable through true nonregular separation are distinct from those arising through regular separation of variables. We develop the theory for these systems and provide examples.
format Article
author Broadbridge, P.
Chanu, C.M.
Miller Jr., Willard
spellingShingle Broadbridge, P.
Chanu, C.M.
Miller Jr., Willard
Solutions of Helmholtz and Schrödinger Equations with Side Condition and Nonregular Separation of Variables
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Broadbridge, P.
Chanu, C.M.
Miller Jr., Willard
author_sort Broadbridge, P.
title Solutions of Helmholtz and Schrödinger Equations with Side Condition and Nonregular Separation of Variables
title_short Solutions of Helmholtz and Schrödinger Equations with Side Condition and Nonregular Separation of Variables
title_full Solutions of Helmholtz and Schrödinger Equations with Side Condition and Nonregular Separation of Variables
title_fullStr Solutions of Helmholtz and Schrödinger Equations with Side Condition and Nonregular Separation of Variables
title_full_unstemmed Solutions of Helmholtz and Schrödinger Equations with Side Condition and Nonregular Separation of Variables
title_sort solutions of helmholtz and schrödinger equations with side condition and nonregular separation of variables
publisher Інститут математики НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/148652
citation_txt Solutions of Helmholtz and Schrödinger Equations with Side Condition and Nonregular Separation of Variables / P. Broadbridge, C.M. Chanu, Willard Miller Jr. // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 36 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT broadbridgep solutionsofhelmholtzandschrodingerequationswithsideconditionandnonregularseparationofvariables
AT chanucm solutionsofhelmholtzandschrodingerequationswithsideconditionandnonregularseparationofvariables
AT millerjrwillard solutionsofhelmholtzandschrodingerequationswithsideconditionandnonregularseparationofvariables
first_indexed 2023-05-20T17:30:58Z
last_indexed 2023-05-20T17:30:58Z
_version_ 1796153471193317376