Frobenius 3-Folds via Singular Flat 3-Webs
We give a geometric interpretation of weighted homogeneous solutions to the associativity equation in terms of the web theory and construct a massive Frobenius 3-fold germ via a singular 3-web germ satisfying the following conditions: 1) the web germ admits at least one infinitesimal symmetry, 2) th...
Збережено в:
Дата: | 2012 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2012
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148653 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Frobenius 3-Folds via Singular Flat 3-Webs / S.I. Agafonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 13 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148653 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1486532019-02-19T01:27:00Z Frobenius 3-Folds via Singular Flat 3-Webs Agafonov, S.I. We give a geometric interpretation of weighted homogeneous solutions to the associativity equation in terms of the web theory and construct a massive Frobenius 3-fold germ via a singular 3-web germ satisfying the following conditions: 1) the web germ admits at least one infinitesimal symmetry, 2) the Chern connection form is holomorphic, 3) the curvature form vanishes identically. 2012 Article Frobenius 3-Folds via Singular Flat 3-Webs / S.I. Agafonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 13 назв. — англ. 1815-0659 DOI: http://dx.doi.org/10.3842/SIGMA.2012.078 2010 Mathematics Subject Classification: 53A60; 53D45; 34M35 http://dspace.nbuv.gov.ua/handle/123456789/148653 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We give a geometric interpretation of weighted homogeneous solutions to the associativity equation in terms of the web theory and construct a massive Frobenius 3-fold germ via a singular 3-web germ satisfying the following conditions: 1) the web germ admits at least one infinitesimal symmetry, 2) the Chern connection form is holomorphic, 3) the curvature form vanishes identically. |
format |
Article |
author |
Agafonov, S.I. |
spellingShingle |
Agafonov, S.I. Frobenius 3-Folds via Singular Flat 3-Webs Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Agafonov, S.I. |
author_sort |
Agafonov, S.I. |
title |
Frobenius 3-Folds via Singular Flat 3-Webs |
title_short |
Frobenius 3-Folds via Singular Flat 3-Webs |
title_full |
Frobenius 3-Folds via Singular Flat 3-Webs |
title_fullStr |
Frobenius 3-Folds via Singular Flat 3-Webs |
title_full_unstemmed |
Frobenius 3-Folds via Singular Flat 3-Webs |
title_sort |
frobenius 3-folds via singular flat 3-webs |
publisher |
Інститут математики НАН України |
publishDate |
2012 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148653 |
citation_txt |
Frobenius 3-Folds via Singular Flat 3-Webs / S.I. Agafonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 13 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT agafonovsi frobenius3foldsviasingularflat3webs |
first_indexed |
2023-05-20T17:30:58Z |
last_indexed |
2023-05-20T17:30:58Z |
_version_ |
1796153471298174976 |