Frobenius 3-Folds via Singular Flat 3-Webs

We give a geometric interpretation of weighted homogeneous solutions to the associativity equation in terms of the web theory and construct a massive Frobenius 3-fold germ via a singular 3-web germ satisfying the following conditions: 1) the web germ admits at least one infinitesimal symmetry, 2) th...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автор: Agafonov, S.I.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148653
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Frobenius 3-Folds via Singular Flat 3-Webs / S.I. Agafonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148653
record_format dspace
spelling irk-123456789-1486532019-02-19T01:27:00Z Frobenius 3-Folds via Singular Flat 3-Webs Agafonov, S.I. We give a geometric interpretation of weighted homogeneous solutions to the associativity equation in terms of the web theory and construct a massive Frobenius 3-fold germ via a singular 3-web germ satisfying the following conditions: 1) the web germ admits at least one infinitesimal symmetry, 2) the Chern connection form is holomorphic, 3) the curvature form vanishes identically. 2012 Article Frobenius 3-Folds via Singular Flat 3-Webs / S.I. Agafonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 13 назв. — англ. 1815-0659 DOI: http://dx.doi.org/10.3842/SIGMA.2012.078 2010 Mathematics Subject Classification: 53A60; 53D45; 34M35 http://dspace.nbuv.gov.ua/handle/123456789/148653 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We give a geometric interpretation of weighted homogeneous solutions to the associativity equation in terms of the web theory and construct a massive Frobenius 3-fold germ via a singular 3-web germ satisfying the following conditions: 1) the web germ admits at least one infinitesimal symmetry, 2) the Chern connection form is holomorphic, 3) the curvature form vanishes identically.
format Article
author Agafonov, S.I.
spellingShingle Agafonov, S.I.
Frobenius 3-Folds via Singular Flat 3-Webs
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Agafonov, S.I.
author_sort Agafonov, S.I.
title Frobenius 3-Folds via Singular Flat 3-Webs
title_short Frobenius 3-Folds via Singular Flat 3-Webs
title_full Frobenius 3-Folds via Singular Flat 3-Webs
title_fullStr Frobenius 3-Folds via Singular Flat 3-Webs
title_full_unstemmed Frobenius 3-Folds via Singular Flat 3-Webs
title_sort frobenius 3-folds via singular flat 3-webs
publisher Інститут математики НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/148653
citation_txt Frobenius 3-Folds via Singular Flat 3-Webs / S.I. Agafonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 13 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT agafonovsi frobenius3foldsviasingularflat3webs
first_indexed 2023-05-20T17:30:58Z
last_indexed 2023-05-20T17:30:58Z
_version_ 1796153471298174976