Novel Enlarged Shape Invariance Property and Exactly Solvable Rational Extensions of the Rosen-Morse II and Eckart Potentials
The existence of a novel enlarged shape invariance property valid for some rational extensions of shape-invariant conventional potentials, first pointed out in the case of the Morse potential, is confirmed by deriving all rational extensions of the Rosen-Morse II and Eckart potentials that can be ob...
Збережено в:
Дата: | 2012 |
---|---|
Автор: | Quesne, C. |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2012
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148656 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Novel Enlarged Shape Invariance Property and Exactly Solvable Rational Extensions of the Rosen-Morse II and Eckart Potentials / C. Quesne // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 48 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineСхожі ресурси
-
Confluent Chains of DBT: Enlarged Shape Invariance and New Orthogonal Polynomials
за авторством: Grandati, Y., та інші
Опубліковано: (2015) -
Solvable Rational Potentials and Exceptional Orthogonal Polynomials in Supersymmetric Quantum Mechanics
за авторством: Quesne, C.
Опубліковано: (2009) -
Quadratic Algebra Approach to an Exactly Solvable Position-Dependent Mass Schrödinger Equation in Two Dimensions
за авторством: Quesne, C.
Опубліковано: (2007) -
L²-invariants and morse-smale flows on manifolds
за авторством: Sharko, V.V.
Опубліковано: (2007) -
Point Canonical Transformation versus Deformed Shape Invariance for Position-Dependent Mass Schrödinger Equations
за авторством: Quesne, C.
Опубліковано: (2009)