Minkowski Polynomials and Mutations

Given a Laurent polynomial f, one can form the period of f: this is a function of one complex variable that plays an important role in mirror symmetry for Fano manifolds. Mutations are a particular class of birational transformations acting on Laurent polynomials in two variables; they preserve the...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Akhtar, M., Coates, T., Galkin, S., Kasprzyk, A.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148658
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Minkowski Polynomials and Mutations / M. Akhtar, T. Coates, S. Galkin, A.M. Kasprzyk // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 25 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148658
record_format dspace
spelling irk-123456789-1486582019-02-19T01:28:03Z Minkowski Polynomials and Mutations Akhtar, M. Coates, T. Galkin, S. Kasprzyk, A.M. Given a Laurent polynomial f, one can form the period of f: this is a function of one complex variable that plays an important role in mirror symmetry for Fano manifolds. Mutations are a particular class of birational transformations acting on Laurent polynomials in two variables; they preserve the period and are closely connected with cluster algebras. We propose a higher-dimensional analog of mutation acting on Laurent polynomials f in n variables. In particular we give a combinatorial description of mutation acting on the Newton polytope P of f, and use this to establish many basic facts about mutations. Mutations can be understood combinatorially in terms of Minkowski rearrangements of slices of P, or in terms of piecewise-linear transformations acting on the dual polytope P* (much like cluster transformations). Mutations map Fano polytopes to Fano polytopes, preserve the Ehrhart series of the dual polytope, and preserve the period of f. Finally we use our results to show that Minkowski polynomials, which are a family of Laurent polynomials that give mirror partners to many three-dimensional Fano manifolds, are connected by a sequence of mutations if and only if they have the same period. 2012 Article Minkowski Polynomials and Mutations / M. Akhtar, T. Coates, S. Galkin, A.M. Kasprzyk // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 25 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 52B20; 16S34; 14J33 DOI: http://dx.doi.org/10.3842/SIGMA.2012.094 http://dspace.nbuv.gov.ua/handle/123456789/148658 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Given a Laurent polynomial f, one can form the period of f: this is a function of one complex variable that plays an important role in mirror symmetry for Fano manifolds. Mutations are a particular class of birational transformations acting on Laurent polynomials in two variables; they preserve the period and are closely connected with cluster algebras. We propose a higher-dimensional analog of mutation acting on Laurent polynomials f in n variables. In particular we give a combinatorial description of mutation acting on the Newton polytope P of f, and use this to establish many basic facts about mutations. Mutations can be understood combinatorially in terms of Minkowski rearrangements of slices of P, or in terms of piecewise-linear transformations acting on the dual polytope P* (much like cluster transformations). Mutations map Fano polytopes to Fano polytopes, preserve the Ehrhart series of the dual polytope, and preserve the period of f. Finally we use our results to show that Minkowski polynomials, which are a family of Laurent polynomials that give mirror partners to many three-dimensional Fano manifolds, are connected by a sequence of mutations if and only if they have the same period.
format Article
author Akhtar, M.
Coates, T.
Galkin, S.
Kasprzyk, A.M.
spellingShingle Akhtar, M.
Coates, T.
Galkin, S.
Kasprzyk, A.M.
Minkowski Polynomials and Mutations
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Akhtar, M.
Coates, T.
Galkin, S.
Kasprzyk, A.M.
author_sort Akhtar, M.
title Minkowski Polynomials and Mutations
title_short Minkowski Polynomials and Mutations
title_full Minkowski Polynomials and Mutations
title_fullStr Minkowski Polynomials and Mutations
title_full_unstemmed Minkowski Polynomials and Mutations
title_sort minkowski polynomials and mutations
publisher Інститут математики НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/148658
citation_txt Minkowski Polynomials and Mutations / M. Akhtar, T. Coates, S. Galkin, A.M. Kasprzyk // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 25 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT akhtarm minkowskipolynomialsandmutations
AT coatest minkowskipolynomialsandmutations
AT galkins minkowskipolynomialsandmutations
AT kasprzykam minkowskipolynomialsandmutations
first_indexed 2023-05-20T17:31:11Z
last_indexed 2023-05-20T17:31:11Z
_version_ 1796153471824560128