Orthogonal Basic Hypergeometric Laurent Polynomials

The Askey-Wilson polynomials are orthogonal polynomials in x=cosθ, which are given as a terminating ₄∅₃ basic hypergeometric series. The non-symmetric Askey-Wilson polynomials are Laurent polynomials in z=eiθ, which are given as a sum of two terminating ₄∅₃'s. They satisfy a biorthogonality rel...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Mourad E.H. Ismail, Stanton, D.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148664
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Orthogonal Basic Hypergeometric Laurent Polynomials / Mourad E.H. Ismail, D. Stanton // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 21 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148664
record_format dspace
spelling irk-123456789-1486642019-02-19T01:28:06Z Orthogonal Basic Hypergeometric Laurent Polynomials Mourad E.H. Ismail Stanton, D. The Askey-Wilson polynomials are orthogonal polynomials in x=cosθ, which are given as a terminating ₄∅₃ basic hypergeometric series. The non-symmetric Askey-Wilson polynomials are Laurent polynomials in z=eiθ, which are given as a sum of two terminating ₄∅₃'s. They satisfy a biorthogonality relation. In this paper new orthogonality relations for single ₄∅₃'s which are Laurent polynomials in z are given, which imply the non-symmetric Askey-Wilson biorthogonality. These results include discrete orthogonality relations. They can be considered as a classical analytic study of the results for non-symmetric Askey-Wilson polynomials which were previously obtained by affine Hecke algebra techniques. 2012 Article Orthogonal Basic Hypergeometric Laurent Polynomials / Mourad E.H. Ismail, D. Stanton // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 21 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33D45 DOI: http://dx.doi.org/10.3842/SIGMA.2012.092 http://dspace.nbuv.gov.ua/handle/123456789/148664 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The Askey-Wilson polynomials are orthogonal polynomials in x=cosθ, which are given as a terminating ₄∅₃ basic hypergeometric series. The non-symmetric Askey-Wilson polynomials are Laurent polynomials in z=eiθ, which are given as a sum of two terminating ₄∅₃'s. They satisfy a biorthogonality relation. In this paper new orthogonality relations for single ₄∅₃'s which are Laurent polynomials in z are given, which imply the non-symmetric Askey-Wilson biorthogonality. These results include discrete orthogonality relations. They can be considered as a classical analytic study of the results for non-symmetric Askey-Wilson polynomials which were previously obtained by affine Hecke algebra techniques.
format Article
author Mourad E.H. Ismail
Stanton, D.
spellingShingle Mourad E.H. Ismail
Stanton, D.
Orthogonal Basic Hypergeometric Laurent Polynomials
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Mourad E.H. Ismail
Stanton, D.
author_sort Mourad E.H. Ismail
title Orthogonal Basic Hypergeometric Laurent Polynomials
title_short Orthogonal Basic Hypergeometric Laurent Polynomials
title_full Orthogonal Basic Hypergeometric Laurent Polynomials
title_fullStr Orthogonal Basic Hypergeometric Laurent Polynomials
title_full_unstemmed Orthogonal Basic Hypergeometric Laurent Polynomials
title_sort orthogonal basic hypergeometric laurent polynomials
publisher Інститут математики НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/148664
citation_txt Orthogonal Basic Hypergeometric Laurent Polynomials / Mourad E.H. Ismail, D. Stanton // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 21 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT mouradehismail orthogonalbasichypergeometriclaurentpolynomials
AT stantond orthogonalbasichypergeometriclaurentpolynomials
first_indexed 2023-05-20T17:31:11Z
last_indexed 2023-05-20T17:31:11Z
_version_ 1796153472038469632