'Magic' Configurations of Three-Qubit Observables and Geometric Hyperplanes of the Smallest Split Cayley Hexagon

Recently Waegell and Aravind [J. Phys. A: Math. Theor. 45 (2012), 405301, 13 pages] have given a number of distinct sets of three-qubit observables, each furnishing a proof of the Kochen-Specker theorem. Here it is demonstrated that two of these sets/configurations, namely the 18₂−12₃ and 2₄14₂−4₃6₄...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Saniga, M., Planat, M., Pracna, P., Lévay, P.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148670
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:'Magic' Configurations of Three-Qubit Observables and Geometric Hyperplanes of the Smallest Split Cayley Hexagon / M. Saniga, M. Planat, P. Pracna, P. Lévay // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 19 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148670
record_format dspace
spelling irk-123456789-1486702019-02-19T01:26:28Z 'Magic' Configurations of Three-Qubit Observables and Geometric Hyperplanes of the Smallest Split Cayley Hexagon Saniga, M. Planat, M. Pracna, P. Lévay, P. Recently Waegell and Aravind [J. Phys. A: Math. Theor. 45 (2012), 405301, 13 pages] have given a number of distinct sets of three-qubit observables, each furnishing a proof of the Kochen-Specker theorem. Here it is demonstrated that two of these sets/configurations, namely the 18₂−12₃ and 2₄14₂−4₃6₄ ones, can uniquely be extended into geometric hyperplanes of the split Cayley hexagon of order two, namely into those of types V₂₂(37;0,12,15,10) and V₄(49;0,0,21,28) in the classification of Frohardt and Johnson [Comm. Algebra 22 (1994), 773-797]. Moreover, employing an automorphism of order seven of the hexagon, six more replicas of either of the two configurations are obtained. 2012 Article 'Magic' Configurations of Three-Qubit Observables and Geometric Hyperplanes of the Smallest Split Cayley Hexagon / M. Saniga, M. Planat, P. Pracna, P. Lévay // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 19 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 51Exx; 81R99 DOI: http://dx.doi.org/10.3842/SIGMA.2012.083 http://dspace.nbuv.gov.ua/handle/123456789/148670 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Recently Waegell and Aravind [J. Phys. A: Math. Theor. 45 (2012), 405301, 13 pages] have given a number of distinct sets of three-qubit observables, each furnishing a proof of the Kochen-Specker theorem. Here it is demonstrated that two of these sets/configurations, namely the 18₂−12₃ and 2₄14₂−4₃6₄ ones, can uniquely be extended into geometric hyperplanes of the split Cayley hexagon of order two, namely into those of types V₂₂(37;0,12,15,10) and V₄(49;0,0,21,28) in the classification of Frohardt and Johnson [Comm. Algebra 22 (1994), 773-797]. Moreover, employing an automorphism of order seven of the hexagon, six more replicas of either of the two configurations are obtained.
format Article
author Saniga, M.
Planat, M.
Pracna, P.
Lévay, P.
spellingShingle Saniga, M.
Planat, M.
Pracna, P.
Lévay, P.
'Magic' Configurations of Three-Qubit Observables and Geometric Hyperplanes of the Smallest Split Cayley Hexagon
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Saniga, M.
Planat, M.
Pracna, P.
Lévay, P.
author_sort Saniga, M.
title 'Magic' Configurations of Three-Qubit Observables and Geometric Hyperplanes of the Smallest Split Cayley Hexagon
title_short 'Magic' Configurations of Three-Qubit Observables and Geometric Hyperplanes of the Smallest Split Cayley Hexagon
title_full 'Magic' Configurations of Three-Qubit Observables and Geometric Hyperplanes of the Smallest Split Cayley Hexagon
title_fullStr 'Magic' Configurations of Three-Qubit Observables and Geometric Hyperplanes of the Smallest Split Cayley Hexagon
title_full_unstemmed 'Magic' Configurations of Three-Qubit Observables and Geometric Hyperplanes of the Smallest Split Cayley Hexagon
title_sort 'magic' configurations of three-qubit observables and geometric hyperplanes of the smallest split cayley hexagon
publisher Інститут математики НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/148670
citation_txt 'Magic' Configurations of Three-Qubit Observables and Geometric Hyperplanes of the Smallest Split Cayley Hexagon / M. Saniga, M. Planat, P. Pracna, P. Lévay // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 19 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT sanigam magicconfigurationsofthreequbitobservablesandgeometrichyperplanesofthesmallestsplitcayleyhexagon
AT planatm magicconfigurationsofthreequbitobservablesandgeometrichyperplanesofthesmallestsplitcayleyhexagon
AT pracnap magicconfigurationsofthreequbitobservablesandgeometrichyperplanesofthesmallestsplitcayleyhexagon
AT levayp magicconfigurationsofthreequbitobservablesandgeometrichyperplanesofthesmallestsplitcayleyhexagon
first_indexed 2023-05-20T17:30:59Z
last_indexed 2023-05-20T17:30:59Z
_version_ 1796153472249233408