The Klein-Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy)

We present the complete classification of equations of the form uxy=f(u,ux,uy) and the Klein-Gordon equations vxy=F(v) connected with one another by differential substitutions v=φ(u,ux,uy) such that φuxφuy≠0 over the ring of complex-valued variables.

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Kuznetsova, M.N., Pekcan, A., Zhiber, A.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148676
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The Klein-Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy) / M.N. Kuznetsova, A. Pekcan, A.V. Zhiber // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148676
record_format dspace
spelling irk-123456789-1486762019-02-19T01:27:58Z The Klein-Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy) Kuznetsova, M.N. Pekcan, A. Zhiber, A.V. We present the complete classification of equations of the form uxy=f(u,ux,uy) and the Klein-Gordon equations vxy=F(v) connected with one another by differential substitutions v=φ(u,ux,uy) such that φuxφuy≠0 over the ring of complex-valued variables. 2012 Article The Klein-Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy) / M.N. Kuznetsova, A. Pekcan, A.V. Zhiber // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 20 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 35L70 DOI: http://dx.doi.org/10.3842/SIGMA.2012.090 http://dspace.nbuv.gov.ua/handle/123456789/148676 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We present the complete classification of equations of the form uxy=f(u,ux,uy) and the Klein-Gordon equations vxy=F(v) connected with one another by differential substitutions v=φ(u,ux,uy) such that φuxφuy≠0 over the ring of complex-valued variables.
format Article
author Kuznetsova, M.N.
Pekcan, A.
Zhiber, A.V.
spellingShingle Kuznetsova, M.N.
Pekcan, A.
Zhiber, A.V.
The Klein-Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy)
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Kuznetsova, M.N.
Pekcan, A.
Zhiber, A.V.
author_sort Kuznetsova, M.N.
title The Klein-Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy)
title_short The Klein-Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy)
title_full The Klein-Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy)
title_fullStr The Klein-Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy)
title_full_unstemmed The Klein-Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy)
title_sort klein-gordon equation and differential substitutions of the form v=φ(u,ux,uy)
publisher Інститут математики НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/148676
citation_txt The Klein-Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy) / M.N. Kuznetsova, A. Pekcan, A.V. Zhiber // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 20 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT kuznetsovamn thekleingordonequationanddifferentialsubstitutionsoftheformvphuuxuy
AT pekcana thekleingordonequationanddifferentialsubstitutionsoftheformvphuuxuy
AT zhiberav thekleingordonequationanddifferentialsubstitutionsoftheformvphuuxuy
AT kuznetsovamn kleingordonequationanddifferentialsubstitutionsoftheformvphuuxuy
AT pekcana kleingordonequationanddifferentialsubstitutionsoftheformvphuuxuy
AT zhiberav kleingordonequationanddifferentialsubstitutionsoftheformvphuuxuy
first_indexed 2023-05-20T17:31:11Z
last_indexed 2023-05-20T17:31:11Z
_version_ 1796153472356188160