The Klein-Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy)
We present the complete classification of equations of the form uxy=f(u,ux,uy) and the Klein-Gordon equations vxy=F(v) connected with one another by differential substitutions v=φ(u,ux,uy) such that φuxφuy≠0 over the ring of complex-valued variables.
Збережено в:
Дата: | 2012 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2012
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148676 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | The Klein-Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy) / M.N. Kuznetsova, A. Pekcan, A.V. Zhiber // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 20 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148676 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1486762019-02-19T01:27:58Z The Klein-Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy) Kuznetsova, M.N. Pekcan, A. Zhiber, A.V. We present the complete classification of equations of the form uxy=f(u,ux,uy) and the Klein-Gordon equations vxy=F(v) connected with one another by differential substitutions v=φ(u,ux,uy) such that φuxφuy≠0 over the ring of complex-valued variables. 2012 Article The Klein-Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy) / M.N. Kuznetsova, A. Pekcan, A.V. Zhiber // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 20 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 35L70 DOI: http://dx.doi.org/10.3842/SIGMA.2012.090 http://dspace.nbuv.gov.ua/handle/123456789/148676 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We present the complete classification of equations of the form uxy=f(u,ux,uy) and the Klein-Gordon equations vxy=F(v) connected with one another by differential substitutions v=φ(u,ux,uy) such that φuxφuy≠0 over the ring of complex-valued variables. |
format |
Article |
author |
Kuznetsova, M.N. Pekcan, A. Zhiber, A.V. |
spellingShingle |
Kuznetsova, M.N. Pekcan, A. Zhiber, A.V. The Klein-Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy) Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Kuznetsova, M.N. Pekcan, A. Zhiber, A.V. |
author_sort |
Kuznetsova, M.N. |
title |
The Klein-Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy) |
title_short |
The Klein-Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy) |
title_full |
The Klein-Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy) |
title_fullStr |
The Klein-Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy) |
title_full_unstemmed |
The Klein-Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy) |
title_sort |
klein-gordon equation and differential substitutions of the form v=φ(u,ux,uy) |
publisher |
Інститут математики НАН України |
publishDate |
2012 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148676 |
citation_txt |
The Klein-Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy) / M.N. Kuznetsova, A. Pekcan, A.V. Zhiber // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 20 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT kuznetsovamn thekleingordonequationanddifferentialsubstitutionsoftheformvphuuxuy AT pekcana thekleingordonequationanddifferentialsubstitutionsoftheformvphuuxuy AT zhiberav thekleingordonequationanddifferentialsubstitutionsoftheformvphuuxuy AT kuznetsovamn kleingordonequationanddifferentialsubstitutionsoftheformvphuuxuy AT pekcana kleingordonequationanddifferentialsubstitutionsoftheformvphuuxuy AT zhiberav kleingordonequationanddifferentialsubstitutionsoftheformvphuuxuy |
first_indexed |
2023-05-20T17:31:11Z |
last_indexed |
2023-05-20T17:31:11Z |
_version_ |
1796153472356188160 |