2025-02-23T14:01:55-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-148684%22&qt=morelikethis&rows=5
2025-02-23T14:01:55-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-148684%22&qt=morelikethis&rows=5
2025-02-23T14:01:55-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T14:01:55-05:00 DEBUG: Deserialized SOLR response
Geometric Theory of the Recursion Operators for the Generalized Zakharov-Shabat System in Pole Gauge on the Algebra sl(n,C) with and without Reductions
We consider the recursion operator approach to the soliton equations related to the generalized Zakharov-Shabat system on the algebra sl(n,C) in pole gauge both in the general position and in the presence of reductions. We present the recursion operators and discuss their geometric meaning as conjug...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2012
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/148684 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
irk-123456789-148684 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1486842019-02-19T01:31:39Z Geometric Theory of the Recursion Operators for the Generalized Zakharov-Shabat System in Pole Gauge on the Algebra sl(n,C) with and without Reductions Yanovski, A.B. Vilasi, G. We consider the recursion operator approach to the soliton equations related to the generalized Zakharov-Shabat system on the algebra sl(n,C) in pole gauge both in the general position and in the presence of reductions. We present the recursion operators and discuss their geometric meaning as conjugate to Nijenhuis tensors for a Poisson-Nijenhuis structure defined on the manifold of potentials. 2012 Article Geometric Theory of the Recursion Operators for the Generalized Zakharov-Shabat System in Pole Gauge on the Algebra sl(n,C) with and without Reductions / A.B. Yanovski, G. Vilasi // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 37 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 35Q51; 37K05; 37K10 DOI: http://dx.doi.org/10.3842/SIGMA.2012.087 http://dspace.nbuv.gov.ua/handle/123456789/148684 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We consider the recursion operator approach to the soliton equations related to the generalized Zakharov-Shabat system on the algebra sl(n,C) in pole gauge both in the general position and in the presence of reductions. We present the recursion operators and discuss their geometric meaning as conjugate to Nijenhuis tensors for a Poisson-Nijenhuis structure defined on the manifold of potentials. |
format |
Article |
author |
Yanovski, A.B. Vilasi, G. |
spellingShingle |
Yanovski, A.B. Vilasi, G. Geometric Theory of the Recursion Operators for the Generalized Zakharov-Shabat System in Pole Gauge on the Algebra sl(n,C) with and without Reductions Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Yanovski, A.B. Vilasi, G. |
author_sort |
Yanovski, A.B. |
title |
Geometric Theory of the Recursion Operators for the Generalized Zakharov-Shabat System in Pole Gauge on the Algebra sl(n,C) with and without Reductions |
title_short |
Geometric Theory of the Recursion Operators for the Generalized Zakharov-Shabat System in Pole Gauge on the Algebra sl(n,C) with and without Reductions |
title_full |
Geometric Theory of the Recursion Operators for the Generalized Zakharov-Shabat System in Pole Gauge on the Algebra sl(n,C) with and without Reductions |
title_fullStr |
Geometric Theory of the Recursion Operators for the Generalized Zakharov-Shabat System in Pole Gauge on the Algebra sl(n,C) with and without Reductions |
title_full_unstemmed |
Geometric Theory of the Recursion Operators for the Generalized Zakharov-Shabat System in Pole Gauge on the Algebra sl(n,C) with and without Reductions |
title_sort |
geometric theory of the recursion operators for the generalized zakharov-shabat system in pole gauge on the algebra sl(n,c) with and without reductions |
publisher |
Інститут математики НАН України |
publishDate |
2012 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148684 |
citation_txt |
Geometric Theory of the Recursion Operators for the Generalized Zakharov-Shabat System in Pole Gauge on the Algebra sl(n,C) with and without Reductions / A.B. Yanovski, G. Vilasi // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 37 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT yanovskiab geometrictheoryoftherecursionoperatorsforthegeneralizedzakharovshabatsysteminpolegaugeonthealgebraslncwithandwithoutreductions AT vilasig geometrictheoryoftherecursionoperatorsforthegeneralizedzakharovshabatsysteminpolegaugeonthealgebraslncwithandwithoutreductions |
first_indexed |
2023-05-20T17:30:59Z |
last_indexed |
2023-05-20T17:30:59Z |
_version_ |
1796153472778764288 |