Construction of a Lax Pair for the E₆⁽¹⁾ q-Painlevé System

We construct a Lax pair for the E₆⁽¹⁾ q-Painlevé system from first principles by employing the general theory of semi-classical orthogonal polynomial systems characterised by divided-difference operators on discrete, quadratic lattices [arXiv:1204.2328]. Our study treats one special case of such lat...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Witte, N.S., Ormerod, C.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148694
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Construction of a Lax Pair for the E₆⁽¹⁾ q-Painlevé System / N.S. Witte, C.M. Ormerod // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148694
record_format dspace
spelling irk-123456789-1486942019-02-19T01:27:25Z Construction of a Lax Pair for the E₆⁽¹⁾ q-Painlevé System Witte, N.S. Ormerod, C.M. We construct a Lax pair for the E₆⁽¹⁾ q-Painlevé system from first principles by employing the general theory of semi-classical orthogonal polynomial systems characterised by divided-difference operators on discrete, quadratic lattices [arXiv:1204.2328]. Our study treats one special case of such lattices - the q-linear lattice - through a natural generalisation of the big q-Jacobi weight. As a by-product of our construction we derive the coupled first-order q-difference equations for the E₆⁽¹⁾ q-Painlevé system, thus verifying our identification. Finally we establish the correspondences of our result with the Lax pairs given earlier and separately by Sakai and Yamada, through explicit transformations. 2012 Article Construction of a Lax Pair for the E₆⁽¹⁾ q-Painlevé System / N.S. Witte, C.M. Ormerod // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 18 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 39A05; 42C05; 34M55; 34M56; 33C45; 37K35 DOI: http://dx.doi.org/10.3842/SIGMA.2012.097 http://dspace.nbuv.gov.ua/handle/123456789/148694 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We construct a Lax pair for the E₆⁽¹⁾ q-Painlevé system from first principles by employing the general theory of semi-classical orthogonal polynomial systems characterised by divided-difference operators on discrete, quadratic lattices [arXiv:1204.2328]. Our study treats one special case of such lattices - the q-linear lattice - through a natural generalisation of the big q-Jacobi weight. As a by-product of our construction we derive the coupled first-order q-difference equations for the E₆⁽¹⁾ q-Painlevé system, thus verifying our identification. Finally we establish the correspondences of our result with the Lax pairs given earlier and separately by Sakai and Yamada, through explicit transformations.
format Article
author Witte, N.S.
Ormerod, C.M.
spellingShingle Witte, N.S.
Ormerod, C.M.
Construction of a Lax Pair for the E₆⁽¹⁾ q-Painlevé System
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Witte, N.S.
Ormerod, C.M.
author_sort Witte, N.S.
title Construction of a Lax Pair for the E₆⁽¹⁾ q-Painlevé System
title_short Construction of a Lax Pair for the E₆⁽¹⁾ q-Painlevé System
title_full Construction of a Lax Pair for the E₆⁽¹⁾ q-Painlevé System
title_fullStr Construction of a Lax Pair for the E₆⁽¹⁾ q-Painlevé System
title_full_unstemmed Construction of a Lax Pair for the E₆⁽¹⁾ q-Painlevé System
title_sort construction of a lax pair for the e₆⁽¹⁾ q-painlevé system
publisher Інститут математики НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/148694
citation_txt Construction of a Lax Pair for the E₆⁽¹⁾ q-Painlevé System / N.S. Witte, C.M. Ormerod // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 18 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT wittens constructionofalaxpairforthee61qpainlevesystem
AT ormerodcm constructionofalaxpairforthee61qpainlevesystem
first_indexed 2023-05-20T17:31:12Z
last_indexed 2023-05-20T17:31:12Z
_version_ 1796153473100677120