Sylvester versus Gundelfinger
Let Vn be the SL₂-module of binary forms of degree n and let V=V₁⊕V₃⊕V₄. We show that the minimum number of generators of the algebra R=C[V]SL₂ of polynomial functions on V invariant under the action of SL₂ equals 63. This settles a 143-year old question.
Збережено в:
Дата: | 2012 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2012
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148715 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Sylvester versus Gundelfinger / A.E. Brouwer, M. Popoviciu // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 20 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148715 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1487152019-02-19T01:28:12Z Sylvester versus Gundelfinger Brouwer, A.E. Popoviciu, M. Let Vn be the SL₂-module of binary forms of degree n and let V=V₁⊕V₃⊕V₄. We show that the minimum number of generators of the algebra R=C[V]SL₂ of polynomial functions on V invariant under the action of SL₂ equals 63. This settles a 143-year old question. 2012 Article Sylvester versus Gundelfinger / A.E. Brouwer, M. Popoviciu // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 20 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 13A15; 68W30 DOI: http://dx.doi.org/10.3842/SIGMA.2012.075 http://dspace.nbuv.gov.ua/handle/123456789/148715 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Let Vn be the SL₂-module of binary forms of degree n and let V=V₁⊕V₃⊕V₄. We show that the minimum number of generators of the algebra R=C[V]SL₂ of polynomial functions on V invariant under the action of SL₂ equals 63. This settles a 143-year old question. |
format |
Article |
author |
Brouwer, A.E. Popoviciu, M. |
spellingShingle |
Brouwer, A.E. Popoviciu, M. Sylvester versus Gundelfinger Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Brouwer, A.E. Popoviciu, M. |
author_sort |
Brouwer, A.E. |
title |
Sylvester versus Gundelfinger |
title_short |
Sylvester versus Gundelfinger |
title_full |
Sylvester versus Gundelfinger |
title_fullStr |
Sylvester versus Gundelfinger |
title_full_unstemmed |
Sylvester versus Gundelfinger |
title_sort |
sylvester versus gundelfinger |
publisher |
Інститут математики НАН України |
publishDate |
2012 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148715 |
citation_txt |
Sylvester versus Gundelfinger / A.E. Brouwer, M. Popoviciu // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 20 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT brouwerae sylvesterversusgundelfinger AT popovicium sylvesterversusgundelfinger |
first_indexed |
2023-05-20T17:31:00Z |
last_indexed |
2023-05-20T17:31:00Z |
_version_ |
1796153473627062272 |