Sylvester versus Gundelfinger

Let Vn be the SL₂-module of binary forms of degree n and let V=V₁⊕V₃⊕V₄. We show that the minimum number of generators of the algebra R=C[V]SL₂ of polynomial functions on V invariant under the action of SL₂ equals 63. This settles a 143-year old question.

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Brouwer, A.E., Popoviciu, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148715
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Sylvester versus Gundelfinger / A.E. Brouwer, M. Popoviciu // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148715
record_format dspace
spelling irk-123456789-1487152019-02-19T01:28:12Z Sylvester versus Gundelfinger Brouwer, A.E. Popoviciu, M. Let Vn be the SL₂-module of binary forms of degree n and let V=V₁⊕V₃⊕V₄. We show that the minimum number of generators of the algebra R=C[V]SL₂ of polynomial functions on V invariant under the action of SL₂ equals 63. This settles a 143-year old question. 2012 Article Sylvester versus Gundelfinger / A.E. Brouwer, M. Popoviciu // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 20 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 13A15; 68W30 DOI: http://dx.doi.org/10.3842/SIGMA.2012.075 http://dspace.nbuv.gov.ua/handle/123456789/148715 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let Vn be the SL₂-module of binary forms of degree n and let V=V₁⊕V₃⊕V₄. We show that the minimum number of generators of the algebra R=C[V]SL₂ of polynomial functions on V invariant under the action of SL₂ equals 63. This settles a 143-year old question.
format Article
author Brouwer, A.E.
Popoviciu, M.
spellingShingle Brouwer, A.E.
Popoviciu, M.
Sylvester versus Gundelfinger
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Brouwer, A.E.
Popoviciu, M.
author_sort Brouwer, A.E.
title Sylvester versus Gundelfinger
title_short Sylvester versus Gundelfinger
title_full Sylvester versus Gundelfinger
title_fullStr Sylvester versus Gundelfinger
title_full_unstemmed Sylvester versus Gundelfinger
title_sort sylvester versus gundelfinger
publisher Інститут математики НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/148715
citation_txt Sylvester versus Gundelfinger / A.E. Brouwer, M. Popoviciu // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 20 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT brouwerae sylvesterversusgundelfinger
AT popovicium sylvesterversusgundelfinger
first_indexed 2023-05-20T17:31:00Z
last_indexed 2023-05-20T17:31:00Z
_version_ 1796153473627062272