2025-02-23T14:29:56-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-148723%22&qt=morelikethis&rows=5
2025-02-23T14:29:56-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-148723%22&qt=morelikethis&rows=5
2025-02-23T14:29:56-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T14:29:56-05:00 DEBUG: Deserialized SOLR response
Recursion Operators and Frobenius Manifolds
In this note I exhibit a ''discrete homotopy'' which joins the category of F-manifolds to the category of Poisson-Nijenhuis manifolds, passing through the category of Frobenius manifolds.
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2012
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/148723 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
irk-123456789-148723 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1487232019-02-19T01:26:25Z Recursion Operators and Frobenius Manifolds Magri, F. In this note I exhibit a ''discrete homotopy'' which joins the category of F-manifolds to the category of Poisson-Nijenhuis manifolds, passing through the category of Frobenius manifolds. 2012 Article Recursion Operators and Frobenius Manifolds / F. Magri // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 4 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 35D45; 53D17; 37K10 DOI: http://dx.doi.org/10.3842/SIGMA.2012.076 http://dspace.nbuv.gov.ua/handle/123456789/148723 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In this note I exhibit a ''discrete homotopy'' which joins the category of F-manifolds to the category of Poisson-Nijenhuis manifolds, passing through the category of Frobenius manifolds. |
format |
Article |
author |
Magri, F. |
spellingShingle |
Magri, F. Recursion Operators and Frobenius Manifolds Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Magri, F. |
author_sort |
Magri, F. |
title |
Recursion Operators and Frobenius Manifolds |
title_short |
Recursion Operators and Frobenius Manifolds |
title_full |
Recursion Operators and Frobenius Manifolds |
title_fullStr |
Recursion Operators and Frobenius Manifolds |
title_full_unstemmed |
Recursion Operators and Frobenius Manifolds |
title_sort |
recursion operators and frobenius manifolds |
publisher |
Інститут математики НАН України |
publishDate |
2012 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148723 |
citation_txt |
Recursion Operators and Frobenius Manifolds / F. Magri // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 4 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT magrif recursionoperatorsandfrobeniusmanifolds |
first_indexed |
2023-05-20T17:31:00Z |
last_indexed |
2023-05-20T17:31:00Z |
_version_ |
1796153473943732224 |