Integrability, Quantization and Moduli Spaces of Curves
This paper has the purpose of presenting in an organic way a new approach to integrable (1+1)-dimensional field systems and their systematic quantization emerging from intersection theory of the moduli space of stable algebraic curves and, in particular, cohomological field theories, Hodge classes a...
Збережено в:
Дата: | 2017 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2017
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148729 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Integrability, Quantization and Moduli Spaces of Curves / P. Rossi // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 37 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | This paper has the purpose of presenting in an organic way a new approach to integrable (1+1)-dimensional field systems and their systematic quantization emerging from intersection theory of the moduli space of stable algebraic curves and, in particular, cohomological field theories, Hodge classes and double ramification cycles. This methods are alternative to the traditional Witten-Kontsevich framework and its generalizations by Dubrovin and Zhang and, among other advantages, have the merit of encompassing quantum integrable systems. Most of this material originates from an ongoing collaboration with A. Buryak, B. Dubrovin and J. Guéré. |
---|