Integrability, Quantization and Moduli Spaces of Curves

This paper has the purpose of presenting in an organic way a new approach to integrable (1+1)-dimensional field systems and their systematic quantization emerging from intersection theory of the moduli space of stable algebraic curves and, in particular, cohomological field theories, Hodge classes a...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автор: Rossi, P.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148729
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Integrability, Quantization and Moduli Spaces of Curves / P. Rossi // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 37 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148729
record_format dspace
spelling irk-123456789-1487292019-02-19T01:28:13Z Integrability, Quantization and Moduli Spaces of Curves Rossi, P. This paper has the purpose of presenting in an organic way a new approach to integrable (1+1)-dimensional field systems and their systematic quantization emerging from intersection theory of the moduli space of stable algebraic curves and, in particular, cohomological field theories, Hodge classes and double ramification cycles. This methods are alternative to the traditional Witten-Kontsevich framework and its generalizations by Dubrovin and Zhang and, among other advantages, have the merit of encompassing quantum integrable systems. Most of this material originates from an ongoing collaboration with A. Buryak, B. Dubrovin and J. Guéré. 2017 Article Integrability, Quantization and Moduli Spaces of Curves / P. Rossi // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 37 назв. — англ. DOI:10.3842/SIGMA.2017.060 1815-0659 2010 Mathematics Subject Classification: 14H10; 14H70; 37K10 http://dspace.nbuv.gov.ua/handle/123456789/148729 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description This paper has the purpose of presenting in an organic way a new approach to integrable (1+1)-dimensional field systems and their systematic quantization emerging from intersection theory of the moduli space of stable algebraic curves and, in particular, cohomological field theories, Hodge classes and double ramification cycles. This methods are alternative to the traditional Witten-Kontsevich framework and its generalizations by Dubrovin and Zhang and, among other advantages, have the merit of encompassing quantum integrable systems. Most of this material originates from an ongoing collaboration with A. Buryak, B. Dubrovin and J. Guéré.
format Article
author Rossi, P.
spellingShingle Rossi, P.
Integrability, Quantization and Moduli Spaces of Curves
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Rossi, P.
author_sort Rossi, P.
title Integrability, Quantization and Moduli Spaces of Curves
title_short Integrability, Quantization and Moduli Spaces of Curves
title_full Integrability, Quantization and Moduli Spaces of Curves
title_fullStr Integrability, Quantization and Moduli Spaces of Curves
title_full_unstemmed Integrability, Quantization and Moduli Spaces of Curves
title_sort integrability, quantization and moduli spaces of curves
publisher Інститут математики НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/148729
citation_txt Integrability, Quantization and Moduli Spaces of Curves / P. Rossi // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 37 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT rossip integrabilityquantizationandmodulispacesofcurves
first_indexed 2023-05-20T17:31:12Z
last_indexed 2023-05-20T17:31:12Z
_version_ 1796153474261450752