Asymptotic Representations of Quantum Affine Superalgebras
We study representations of the quantum affine superalgebra associated with a general linear Lie superalgebra. In the spirit of Hernandez-Jimbo, we construct inductive systems of Kirillov-Reshetikhin modules based on a cyclicity result that we established previously on tensor products of these modul...
Збережено в:
Дата: | 2017 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2017
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148732 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Asymptotic Representations of Quantum Affine Superalgebras / H. Zhang // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 37 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148732 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1487322019-02-19T01:23:26Z Asymptotic Representations of Quantum Affine Superalgebras Zhang, H. We study representations of the quantum affine superalgebra associated with a general linear Lie superalgebra. In the spirit of Hernandez-Jimbo, we construct inductive systems of Kirillov-Reshetikhin modules based on a cyclicity result that we established previously on tensor products of these modules, and realize their inductive limits as modules over its Borel subalgebra, the so-called q-Yangian. A new generic asymptotic limit of the same inductive systems is proposed, resulting in modules over the full quantum affine superalgebra. We derive generalized Baxter's relations in the sense of Frenkel-Hernandez for representations of the full quantum group. 2017 Article Asymptotic Representations of Quantum Affine Superalgebras / H. Zhang // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 37 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B37; 17B10; 81R50 DOI:10.3842/SIGMA.2017.066 http://dspace.nbuv.gov.ua/handle/123456789/148732 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We study representations of the quantum affine superalgebra associated with a general linear Lie superalgebra. In the spirit of Hernandez-Jimbo, we construct inductive systems of Kirillov-Reshetikhin modules based on a cyclicity result that we established previously on tensor products of these modules, and realize their inductive limits as modules over its Borel subalgebra, the so-called q-Yangian. A new generic asymptotic limit of the same inductive systems is proposed, resulting in modules over the full quantum affine superalgebra. We derive generalized Baxter's relations in the sense of Frenkel-Hernandez for representations of the full quantum group. |
format |
Article |
author |
Zhang, H. |
spellingShingle |
Zhang, H. Asymptotic Representations of Quantum Affine Superalgebras Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Zhang, H. |
author_sort |
Zhang, H. |
title |
Asymptotic Representations of Quantum Affine Superalgebras |
title_short |
Asymptotic Representations of Quantum Affine Superalgebras |
title_full |
Asymptotic Representations of Quantum Affine Superalgebras |
title_fullStr |
Asymptotic Representations of Quantum Affine Superalgebras |
title_full_unstemmed |
Asymptotic Representations of Quantum Affine Superalgebras |
title_sort |
asymptotic representations of quantum affine superalgebras |
publisher |
Інститут математики НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148732 |
citation_txt |
Asymptotic Representations of Quantum Affine Superalgebras / H. Zhang // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 37 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT zhangh asymptoticrepresentationsofquantumaffinesuperalgebras |
first_indexed |
2023-05-20T17:31:13Z |
last_indexed |
2023-05-20T17:31:13Z |
_version_ |
1796153484995723264 |