Asymptotic Representations of Quantum Affine Superalgebras

We study representations of the quantum affine superalgebra associated with a general linear Lie superalgebra. In the spirit of Hernandez-Jimbo, we construct inductive systems of Kirillov-Reshetikhin modules based on a cyclicity result that we established previously on tensor products of these modul...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автор: Zhang, H.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148732
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Asymptotic Representations of Quantum Affine Superalgebras / H. Zhang // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 37 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148732
record_format dspace
spelling irk-123456789-1487322019-02-19T01:23:26Z Asymptotic Representations of Quantum Affine Superalgebras Zhang, H. We study representations of the quantum affine superalgebra associated with a general linear Lie superalgebra. In the spirit of Hernandez-Jimbo, we construct inductive systems of Kirillov-Reshetikhin modules based on a cyclicity result that we established previously on tensor products of these modules, and realize their inductive limits as modules over its Borel subalgebra, the so-called q-Yangian. A new generic asymptotic limit of the same inductive systems is proposed, resulting in modules over the full quantum affine superalgebra. We derive generalized Baxter's relations in the sense of Frenkel-Hernandez for representations of the full quantum group. 2017 Article Asymptotic Representations of Quantum Affine Superalgebras / H. Zhang // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 37 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B37; 17B10; 81R50 DOI:10.3842/SIGMA.2017.066 http://dspace.nbuv.gov.ua/handle/123456789/148732 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We study representations of the quantum affine superalgebra associated with a general linear Lie superalgebra. In the spirit of Hernandez-Jimbo, we construct inductive systems of Kirillov-Reshetikhin modules based on a cyclicity result that we established previously on tensor products of these modules, and realize their inductive limits as modules over its Borel subalgebra, the so-called q-Yangian. A new generic asymptotic limit of the same inductive systems is proposed, resulting in modules over the full quantum affine superalgebra. We derive generalized Baxter's relations in the sense of Frenkel-Hernandez for representations of the full quantum group.
format Article
author Zhang, H.
spellingShingle Zhang, H.
Asymptotic Representations of Quantum Affine Superalgebras
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Zhang, H.
author_sort Zhang, H.
title Asymptotic Representations of Quantum Affine Superalgebras
title_short Asymptotic Representations of Quantum Affine Superalgebras
title_full Asymptotic Representations of Quantum Affine Superalgebras
title_fullStr Asymptotic Representations of Quantum Affine Superalgebras
title_full_unstemmed Asymptotic Representations of Quantum Affine Superalgebras
title_sort asymptotic representations of quantum affine superalgebras
publisher Інститут математики НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/148732
citation_txt Asymptotic Representations of Quantum Affine Superalgebras / H. Zhang // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 37 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT zhangh asymptoticrepresentationsofquantumaffinesuperalgebras
first_indexed 2023-05-20T17:31:13Z
last_indexed 2023-05-20T17:31:13Z
_version_ 1796153484995723264