Minuscule Schubert Varieties and Mirror Symmetry
We consider smooth complete intersection Calabi-Yau 3-folds in minuscule Schubert varieties, and study their mirror symmetry by degenerating the ambient Schubert varieties to Hibi toric varieties. We list all possible Calabi-Yau 3-folds of this type up to deformation equivalences, and find a new exa...
Збережено в:
Дата: | 2017 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2017
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148736 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Minuscule Schubert Varieties and Mirror Symmetry / M. Miura // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 65 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We consider smooth complete intersection Calabi-Yau 3-folds in minuscule Schubert varieties, and study their mirror symmetry by degenerating the ambient Schubert varieties to Hibi toric varieties. We list all possible Calabi-Yau 3-folds of this type up to deformation equivalences, and find a new example of smooth Calabi-Yau 3-folds of Picard number one; a complete intersection in a locally factorial Schubert variety Σ of the Cayley plane OP². We calculate topological invariants and BPS numbers of this Calabi-Yau 3-fold and conjecture that it has a non-trivial Fourier-Mukai partner. |
---|