Null Angular Momentum and Weak KAM Solutions of the Newtonian N-Body Problem

In [Arch. Ration. Mech. Anal. 213 (2014), 981-991] it has been proved that in the Newtonian N-body problem, given a minimal central configuration a and an arbitrary configuration x, there exists a completely parabolic orbit starting on x and asymptotic to the homothetic parabolic motion of a, furthe...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автор: Percino-Figueroa, B.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148745
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Null Angular Momentum and Weak KAM Solutions of the Newtonian N-Body Problem / B.A. Percino-Figueroa // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:In [Arch. Ration. Mech. Anal. 213 (2014), 981-991] it has been proved that in the Newtonian N-body problem, given a minimal central configuration a and an arbitrary configuration x, there exists a completely parabolic orbit starting on x and asymptotic to the homothetic parabolic motion of a, furthermore such an orbit is a free time minimizer of the action functional. In this article we extend this result in abundance of completely parabolic motions by proving that under the same hypothesis it is possible to get that the completely parabolic motion starting at x has zero angular momentum. We achieve this by characterizing the rotation invariant weak KAM solutions as those defining a lamination on the configuration space by free time minimizers with zero angular momentum.