Null Angular Momentum and Weak KAM Solutions of the Newtonian N-Body Problem
In [Arch. Ration. Mech. Anal. 213 (2014), 981-991] it has been proved that in the Newtonian N-body problem, given a minimal central configuration a and an arbitrary configuration x, there exists a completely parabolic orbit starting on x and asymptotic to the homothetic parabolic motion of a, furthe...
Збережено в:
Дата: | 2017 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2017
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148745 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Null Angular Momentum and Weak KAM Solutions of the Newtonian N-Body Problem / B.A. Percino-Figueroa // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 12 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | In [Arch. Ration. Mech. Anal. 213 (2014), 981-991] it has been proved that in the Newtonian N-body problem, given a minimal central configuration a and an arbitrary configuration x, there exists a completely parabolic orbit starting on x and asymptotic to the homothetic parabolic motion of a, furthermore such an orbit is a free time minimizer of the action functional. In this article we extend this result in abundance of completely parabolic motions by proving that under the same hypothesis it is possible to get that the completely parabolic motion starting at x has zero angular momentum. We achieve this by characterizing the rotation invariant weak KAM solutions as those defining a lamination on the configuration space by free time minimizers with zero angular momentum. |
---|