An Elliptic Garnier System from Interpolation
Considering a certain interpolation problem, we derive a series of elliptic difference isomonodromic systems together with their Lax forms. These systems give a multivariate extension of the elliptic Painlevé equation.
Збережено в:
Дата: | 2017 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2017
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148749 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | An Elliptic Garnier System from Interpolation / Y. Yamada // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 15 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148749 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1487492019-02-19T01:23:45Z An Elliptic Garnier System from Interpolation Yamada, Y. Considering a certain interpolation problem, we derive a series of elliptic difference isomonodromic systems together with their Lax forms. These systems give a multivariate extension of the elliptic Painlevé equation. 2017 Article An Elliptic Garnier System from Interpolation / Y. Yamada // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 15 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 39A13; 33E05; 33E17; 41A05 DOI:10.3842/SIGMA.2017.069 http://dspace.nbuv.gov.ua/handle/123456789/148749 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Considering a certain interpolation problem, we derive a series of elliptic difference isomonodromic systems together with their Lax forms. These systems give a multivariate extension of the elliptic Painlevé equation. |
format |
Article |
author |
Yamada, Y. |
spellingShingle |
Yamada, Y. An Elliptic Garnier System from Interpolation Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Yamada, Y. |
author_sort |
Yamada, Y. |
title |
An Elliptic Garnier System from Interpolation |
title_short |
An Elliptic Garnier System from Interpolation |
title_full |
An Elliptic Garnier System from Interpolation |
title_fullStr |
An Elliptic Garnier System from Interpolation |
title_full_unstemmed |
An Elliptic Garnier System from Interpolation |
title_sort |
elliptic garnier system from interpolation |
publisher |
Інститут математики НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148749 |
citation_txt |
An Elliptic Garnier System from Interpolation / Y. Yamada // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 15 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT yamaday anellipticgarniersystemfrominterpolation AT yamaday ellipticgarniersystemfrominterpolation |
first_indexed |
2023-05-20T17:31:14Z |
last_indexed |
2023-05-20T17:31:14Z |
_version_ |
1796153485313441792 |