N -Bright-Dark Soliton Solution to a Semi-Discrete Vector Nonlinear Schrödinger Equation

In this paper, a general bright-dark soliton solution in the form of Pfaffian is constructed for an integrable semi-discrete vector NLS equation via Hirota's bilinear method. One- and two-bright-dark soliton solutions are explicitly presented for two-component semi-discrete NLS equation; two-br...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Feng, B.-F., Ohta, Y.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148759
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:N -Bright-Dark Soliton Solution to a Semi-Discrete Vector Nonlinear Schrödinger Equation / B.-F. Feng, Y. Ohta // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 51 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:In this paper, a general bright-dark soliton solution in the form of Pfaffian is constructed for an integrable semi-discrete vector NLS equation via Hirota's bilinear method. One- and two-bright-dark soliton solutions are explicitly presented for two-component semi-discrete NLS equation; two-bright-one-dark, and one-bright-two-dark soliton solutions are also given explicitly for three-component semi-discrete NLS equation. The asymptotic behavior is analysed for two-soliton solutions.