N -Bright-Dark Soliton Solution to a Semi-Discrete Vector Nonlinear Schrödinger Equation

In this paper, a general bright-dark soliton solution in the form of Pfaffian is constructed for an integrable semi-discrete vector NLS equation via Hirota's bilinear method. One- and two-bright-dark soliton solutions are explicitly presented for two-component semi-discrete NLS equation; two-br...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Feng, B.-F., Ohta, Y.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148759
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:N -Bright-Dark Soliton Solution to a Semi-Discrete Vector Nonlinear Schrödinger Equation / B.-F. Feng, Y. Ohta // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 51 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148759
record_format dspace
spelling irk-123456789-1487592019-02-19T01:24:56Z N -Bright-Dark Soliton Solution to a Semi-Discrete Vector Nonlinear Schrödinger Equation Feng, B.-F. Ohta, Y. In this paper, a general bright-dark soliton solution in the form of Pfaffian is constructed for an integrable semi-discrete vector NLS equation via Hirota's bilinear method. One- and two-bright-dark soliton solutions are explicitly presented for two-component semi-discrete NLS equation; two-bright-one-dark, and one-bright-two-dark soliton solutions are also given explicitly for three-component semi-discrete NLS equation. The asymptotic behavior is analysed for two-soliton solutions. 2017 Article N -Bright-Dark Soliton Solution to a Semi-Discrete Vector Nonlinear Schrödinger Equation / B.-F. Feng, Y. Ohta // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 51 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 39A10; 35Q55 DOI:10.3842/SIGMA.2017.071 http://dspace.nbuv.gov.ua/handle/123456789/148759 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper, a general bright-dark soliton solution in the form of Pfaffian is constructed for an integrable semi-discrete vector NLS equation via Hirota's bilinear method. One- and two-bright-dark soliton solutions are explicitly presented for two-component semi-discrete NLS equation; two-bright-one-dark, and one-bright-two-dark soliton solutions are also given explicitly for three-component semi-discrete NLS equation. The asymptotic behavior is analysed for two-soliton solutions.
format Article
author Feng, B.-F.
Ohta, Y.
spellingShingle Feng, B.-F.
Ohta, Y.
N -Bright-Dark Soliton Solution to a Semi-Discrete Vector Nonlinear Schrödinger Equation
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Feng, B.-F.
Ohta, Y.
author_sort Feng, B.-F.
title N -Bright-Dark Soliton Solution to a Semi-Discrete Vector Nonlinear Schrödinger Equation
title_short N -Bright-Dark Soliton Solution to a Semi-Discrete Vector Nonlinear Schrödinger Equation
title_full N -Bright-Dark Soliton Solution to a Semi-Discrete Vector Nonlinear Schrödinger Equation
title_fullStr N -Bright-Dark Soliton Solution to a Semi-Discrete Vector Nonlinear Schrödinger Equation
title_full_unstemmed N -Bright-Dark Soliton Solution to a Semi-Discrete Vector Nonlinear Schrödinger Equation
title_sort n -bright-dark soliton solution to a semi-discrete vector nonlinear schrödinger equation
publisher Інститут математики НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/148759
citation_txt N -Bright-Dark Soliton Solution to a Semi-Discrete Vector Nonlinear Schrödinger Equation / B.-F. Feng, Y. Ohta // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 51 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT fengbf nbrightdarksolitonsolutiontoasemidiscretevectornonlinearschrodingerequation
AT ohtay nbrightdarksolitonsolutiontoasemidiscretevectornonlinearschrodingerequation
first_indexed 2023-05-20T17:31:15Z
last_indexed 2023-05-20T17:31:15Z
_version_ 1796153485628014592