Factorizable R-Matrices for Small Quantum Groups

Representations of small quantum groups uq(g) at a root of unity and their extensions provide interesting tensor categories, that appear in different areas of algebra and mathematical physics. There is an ansatz by Lusztig to endow these categories with the structure of a braided tensor category. In...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Lentner, S., Ohrmann, T.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148764
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Factorizable R-Matrices for Small Quantum Groups / S. Lentner, T. Ohrmann // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 19 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148764
record_format dspace
spelling irk-123456789-1487642019-02-19T01:23:49Z Factorizable R-Matrices for Small Quantum Groups Lentner, S. Ohrmann, T. Representations of small quantum groups uq(g) at a root of unity and their extensions provide interesting tensor categories, that appear in different areas of algebra and mathematical physics. There is an ansatz by Lusztig to endow these categories with the structure of a braided tensor category. In this article we determine all solutions to this ansatz that lead to a non-degenerate braiding. Particularly interesting are cases where the order of q has common divisors with root lengths. In this way we produce familiar and unfamiliar series of (non-semisimple) modular tensor categories. In the degenerate cases we determine the group of so-called transparent objects for further use. 2017 Article Factorizable R-Matrices for Small Quantum Groups / S. Lentner, T. Ohrmann // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 19 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B37; 20G42; 81R50; 18D10 DOI:10.3842/SIGMA.2017.076 http://dspace.nbuv.gov.ua/handle/123456789/148764 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Representations of small quantum groups uq(g) at a root of unity and their extensions provide interesting tensor categories, that appear in different areas of algebra and mathematical physics. There is an ansatz by Lusztig to endow these categories with the structure of a braided tensor category. In this article we determine all solutions to this ansatz that lead to a non-degenerate braiding. Particularly interesting are cases where the order of q has common divisors with root lengths. In this way we produce familiar and unfamiliar series of (non-semisimple) modular tensor categories. In the degenerate cases we determine the group of so-called transparent objects for further use.
format Article
author Lentner, S.
Ohrmann, T.
spellingShingle Lentner, S.
Ohrmann, T.
Factorizable R-Matrices for Small Quantum Groups
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Lentner, S.
Ohrmann, T.
author_sort Lentner, S.
title Factorizable R-Matrices for Small Quantum Groups
title_short Factorizable R-Matrices for Small Quantum Groups
title_full Factorizable R-Matrices for Small Quantum Groups
title_fullStr Factorizable R-Matrices for Small Quantum Groups
title_full_unstemmed Factorizable R-Matrices for Small Quantum Groups
title_sort factorizable r-matrices for small quantum groups
publisher Інститут математики НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/148764
citation_txt Factorizable R-Matrices for Small Quantum Groups / S. Lentner, T. Ohrmann // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 19 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT lentners factorizablermatricesforsmallquantumgroups
AT ohrmannt factorizablermatricesforsmallquantumgroups
first_indexed 2023-05-20T17:31:15Z
last_indexed 2023-05-20T17:31:15Z
_version_ 1796153485839826944