On Reductions of the Hirota-Miwa Equation

The Hirota-Miwa equation (also known as the discrete KP equation, or the octahedron recurrence) is a bilinear partial difference equation in three independent variables. It is integrable in the sense that it arises as the compatibility condition of a linear system (Lax pair). The Hirota-Miwa equatio...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Hone, A.N.W., Kouloukas, T.E., Ward, C.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148768
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On Reductions of the Hirota-Miwa Equation / A.N.W. Hone, T.E. Kouloukas, C. Ward // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 29 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148768
record_format dspace
spelling irk-123456789-1487682019-02-19T01:31:19Z On Reductions of the Hirota-Miwa Equation Hone, A.N.W. Kouloukas, T.E. Ward, C. The Hirota-Miwa equation (also known as the discrete KP equation, or the octahedron recurrence) is a bilinear partial difference equation in three independent variables. It is integrable in the sense that it arises as the compatibility condition of a linear system (Lax pair). The Hirota-Miwa equation has infinitely many reductions of plane wave type (including a quadratic exponential gauge transformation), defined by a triple of integers or half-integers, which produce bilinear ordinary difference equations of Somos/Gale-Robinson type. Here it is explained how to obtain Lax pairs and presymplectic structures for these reductions, in order to demonstrate Liouville integrability of some associated maps, certain of which are related to reductions of discrete Toda and discrete KdV equations. 2017 Article On Reductions of the Hirota-Miwa Equation / A.N.W. Hone, T.E. Kouloukas, C. Ward // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 29 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 70H06; 37K10; 39A20; 39A14; 13F60 DOI:10.3842/SIGMA.2017.057 http://dspace.nbuv.gov.ua/handle/123456789/148768 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The Hirota-Miwa equation (also known as the discrete KP equation, or the octahedron recurrence) is a bilinear partial difference equation in three independent variables. It is integrable in the sense that it arises as the compatibility condition of a linear system (Lax pair). The Hirota-Miwa equation has infinitely many reductions of plane wave type (including a quadratic exponential gauge transformation), defined by a triple of integers or half-integers, which produce bilinear ordinary difference equations of Somos/Gale-Robinson type. Here it is explained how to obtain Lax pairs and presymplectic structures for these reductions, in order to demonstrate Liouville integrability of some associated maps, certain of which are related to reductions of discrete Toda and discrete KdV equations.
format Article
author Hone, A.N.W.
Kouloukas, T.E.
Ward, C.
spellingShingle Hone, A.N.W.
Kouloukas, T.E.
Ward, C.
On Reductions of the Hirota-Miwa Equation
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Hone, A.N.W.
Kouloukas, T.E.
Ward, C.
author_sort Hone, A.N.W.
title On Reductions of the Hirota-Miwa Equation
title_short On Reductions of the Hirota-Miwa Equation
title_full On Reductions of the Hirota-Miwa Equation
title_fullStr On Reductions of the Hirota-Miwa Equation
title_full_unstemmed On Reductions of the Hirota-Miwa Equation
title_sort on reductions of the hirota-miwa equation
publisher Інститут математики НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/148768
citation_txt On Reductions of the Hirota-Miwa Equation / A.N.W. Hone, T.E. Kouloukas, C. Ward // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 29 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT honeanw onreductionsofthehirotamiwaequation
AT kouloukaste onreductionsofthehirotamiwaequation
AT wardc onreductionsofthehirotamiwaequation
first_indexed 2023-05-20T17:31:04Z
last_indexed 2023-05-20T17:31:04Z
_version_ 1796153477336924160