The Fundamental k-Form and Global Relations

In [Proc. Roy. Soc. London Ser. A 453 (1997), no. 1962, 1411-1443] A.S. Fokas introduced a novel method for solving a large class of boundary value problems associated with evolution equations. This approach relies on the construction of a so-called global relation: an integral expression that coupl...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автор: Anthony C.L. Ashton
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148979
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The Fundamental k-Form and Global Relations / Anthony C.L. Ashton // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148979
record_format dspace
spelling irk-123456789-1489792019-02-20T01:28:14Z The Fundamental k-Form and Global Relations Anthony C.L. Ashton In [Proc. Roy. Soc. London Ser. A 453 (1997), no. 1962, 1411-1443] A.S. Fokas introduced a novel method for solving a large class of boundary value problems associated with evolution equations. This approach relies on the construction of a so-called global relation: an integral expression that couples initial and boundary data. The global relation can be found by constructing a differential form dependent on some spectral parameter, that is closed on the condition that a given partial differential equation is satisfied. Such a differential form is said to be fundamental [Quart. J. Mech. Appl. Math. 55 (2002), 457-479]. We give an algorithmic approach in constructing a fundamental k-form associated with a given boundary value problem, and address issues of uniqueness. Also, we extend a result of Fokas and Zyskin to give an integral representation to the solution of a class of boundary value problems, in an arbitrary number of dimensions. We present an extended example using these results in which we construct a global relation for the linearised Navier-Stokes equations. 2008 Article The Fundamental k-Form and Global Relations / Anthony C.L. Ashton // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 5 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 30E25; 35E99; 35P05 http://dspace.nbuv.gov.ua/handle/123456789/148979 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In [Proc. Roy. Soc. London Ser. A 453 (1997), no. 1962, 1411-1443] A.S. Fokas introduced a novel method for solving a large class of boundary value problems associated with evolution equations. This approach relies on the construction of a so-called global relation: an integral expression that couples initial and boundary data. The global relation can be found by constructing a differential form dependent on some spectral parameter, that is closed on the condition that a given partial differential equation is satisfied. Such a differential form is said to be fundamental [Quart. J. Mech. Appl. Math. 55 (2002), 457-479]. We give an algorithmic approach in constructing a fundamental k-form associated with a given boundary value problem, and address issues of uniqueness. Also, we extend a result of Fokas and Zyskin to give an integral representation to the solution of a class of boundary value problems, in an arbitrary number of dimensions. We present an extended example using these results in which we construct a global relation for the linearised Navier-Stokes equations.
format Article
author Anthony C.L. Ashton
spellingShingle Anthony C.L. Ashton
The Fundamental k-Form and Global Relations
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Anthony C.L. Ashton
author_sort Anthony C.L. Ashton
title The Fundamental k-Form and Global Relations
title_short The Fundamental k-Form and Global Relations
title_full The Fundamental k-Form and Global Relations
title_fullStr The Fundamental k-Form and Global Relations
title_full_unstemmed The Fundamental k-Form and Global Relations
title_sort fundamental k-form and global relations
publisher Інститут математики НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/148979
citation_txt The Fundamental k-Form and Global Relations / Anthony C.L. Ashton // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 5 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT anthonyclashton thefundamentalkformandglobalrelations
AT anthonyclashton fundamentalkformandglobalrelations
first_indexed 2023-05-20T17:31:56Z
last_indexed 2023-05-20T17:31:56Z
_version_ 1796153511967195136