Symmetry Transformation in Extended Phase Space: the Harmonic Oscillator in the Husimi Representation

In a previous work the concept of quantum potential is generalized into extended phase space (EPS) for a particle in linear and harmonic potentials. It was shown there that in contrast to the Schrödinger quantum mechanics by an appropriate extended canonical transformation one can obtain the Wigner...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Bahrami, S., Nasiri, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148984
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Symmetry Transformation in Extended Phase Space: the Harmonic Oscillator in the Husimi Representation / S. Bahrami, S. Nasiri // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148984
record_format dspace
spelling irk-123456789-1489842019-02-20T01:25:48Z Symmetry Transformation in Extended Phase Space: the Harmonic Oscillator in the Husimi Representation Bahrami, S. Nasiri, S. In a previous work the concept of quantum potential is generalized into extended phase space (EPS) for a particle in linear and harmonic potentials. It was shown there that in contrast to the Schrödinger quantum mechanics by an appropriate extended canonical transformation one can obtain the Wigner representation of phase space quantum mechanics in which the quantum potential is removed from dynamical equation. In other words, one still has the form invariance of the ordinary Hamilton-Jacobi equation in this representation. The situation, mathematically, is similar to the disappearance of the centrifugal potential in going from the spherical to the Cartesian coordinates. Here we show that the Husimi representation is another possible representation where the quantum potential for the harmonic potential disappears and the modified Hamilton-Jacobi equation reduces to the familiar classical form. This happens when the parameter in the Husimi transformation assumes a specific value corresponding to Q-function. 2008 Article Symmetry Transformation in Extended Phase Space: the Harmonic Oscillator in the Husimi Representation / S. Bahrami, S. Nasiri // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 18 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81S30 http://dspace.nbuv.gov.ua/handle/123456789/148984 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In a previous work the concept of quantum potential is generalized into extended phase space (EPS) for a particle in linear and harmonic potentials. It was shown there that in contrast to the Schrödinger quantum mechanics by an appropriate extended canonical transformation one can obtain the Wigner representation of phase space quantum mechanics in which the quantum potential is removed from dynamical equation. In other words, one still has the form invariance of the ordinary Hamilton-Jacobi equation in this representation. The situation, mathematically, is similar to the disappearance of the centrifugal potential in going from the spherical to the Cartesian coordinates. Here we show that the Husimi representation is another possible representation where the quantum potential for the harmonic potential disappears and the modified Hamilton-Jacobi equation reduces to the familiar classical form. This happens when the parameter in the Husimi transformation assumes a specific value corresponding to Q-function.
format Article
author Bahrami, S.
Nasiri, S.
spellingShingle Bahrami, S.
Nasiri, S.
Symmetry Transformation in Extended Phase Space: the Harmonic Oscillator in the Husimi Representation
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Bahrami, S.
Nasiri, S.
author_sort Bahrami, S.
title Symmetry Transformation in Extended Phase Space: the Harmonic Oscillator in the Husimi Representation
title_short Symmetry Transformation in Extended Phase Space: the Harmonic Oscillator in the Husimi Representation
title_full Symmetry Transformation in Extended Phase Space: the Harmonic Oscillator in the Husimi Representation
title_fullStr Symmetry Transformation in Extended Phase Space: the Harmonic Oscillator in the Husimi Representation
title_full_unstemmed Symmetry Transformation in Extended Phase Space: the Harmonic Oscillator in the Husimi Representation
title_sort symmetry transformation in extended phase space: the harmonic oscillator in the husimi representation
publisher Інститут математики НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/148984
citation_txt Symmetry Transformation in Extended Phase Space: the Harmonic Oscillator in the Husimi Representation / S. Bahrami, S. Nasiri // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 18 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT bahramis symmetrytransformationinextendedphasespacetheharmonicoscillatorinthehusimirepresentation
AT nasiris symmetrytransformationinextendedphasespacetheharmonicoscillatorinthehusimirepresentation
first_indexed 2023-05-20T17:31:57Z
last_indexed 2023-05-20T17:31:57Z
_version_ 1796153512387674112