Non-Gatherable Triples for Non-Affine Root Systems
This paper contains a complete description of minimal non-gatherable triangle triples in the lambda-sequences for the classical root systems, F₄ and E₆. Such sequences are associated with reduced decompositions (words) in affine and non-affine Weyl groups. The existence of the non-gatherable triples...
Збережено в:
Дата: | 2008 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2008
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148985 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Non-Gatherable Triples for Non-Affine Root Systems / I. Cherednik, K. Schneider // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 7 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148985 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1489852019-02-20T01:23:29Z Non-Gatherable Triples for Non-Affine Root Systems Cherednik, I. Schneider, K. This paper contains a complete description of minimal non-gatherable triangle triples in the lambda-sequences for the classical root systems, F₄ and E₆. Such sequences are associated with reduced decompositions (words) in affine and non-affine Weyl groups. The existence of the non-gatherable triples is a combinatorial obstacle for using the technique of intertwiners for an explicit description of the irreducible representations of the (double) affine Hecke algebras, complementary to their algebraic-geometric theory. 2008 Article Non-Gatherable Triples for Non-Affine Root Systems / I. Cherednik, K. Schneider // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 7 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 20H15; 20F55 http://dspace.nbuv.gov.ua/handle/123456789/148985 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
This paper contains a complete description of minimal non-gatherable triangle triples in the lambda-sequences for the classical root systems, F₄ and E₆. Such sequences are associated with reduced decompositions (words) in affine and non-affine Weyl groups. The existence of the non-gatherable triples is a combinatorial obstacle for using the technique of intertwiners for an explicit description of the irreducible representations of the (double) affine Hecke algebras, complementary to their algebraic-geometric theory. |
format |
Article |
author |
Cherednik, I. Schneider, K. |
spellingShingle |
Cherednik, I. Schneider, K. Non-Gatherable Triples for Non-Affine Root Systems Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Cherednik, I. Schneider, K. |
author_sort |
Cherednik, I. |
title |
Non-Gatherable Triples for Non-Affine Root Systems |
title_short |
Non-Gatherable Triples for Non-Affine Root Systems |
title_full |
Non-Gatherable Triples for Non-Affine Root Systems |
title_fullStr |
Non-Gatherable Triples for Non-Affine Root Systems |
title_full_unstemmed |
Non-Gatherable Triples for Non-Affine Root Systems |
title_sort |
non-gatherable triples for non-affine root systems |
publisher |
Інститут математики НАН України |
publishDate |
2008 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148985 |
citation_txt |
Non-Gatherable Triples for Non-Affine Root Systems / I. Cherednik, K. Schneider // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 7 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT cheredniki nongatherabletriplesfornonaffinerootsystems AT schneiderk nongatherabletriplesfornonaffinerootsystems |
first_indexed |
2023-05-20T17:31:35Z |
last_indexed |
2023-05-20T17:31:35Z |
_version_ |
1796153492136525824 |