Non-Gatherable Triples for Non-Affine Root Systems

This paper contains a complete description of minimal non-gatherable triangle triples in the lambda-sequences for the classical root systems, F₄ and E₆. Such sequences are associated with reduced decompositions (words) in affine and non-affine Weyl groups. The existence of the non-gatherable triples...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Cherednik, I., Schneider, K.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148985
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Non-Gatherable Triples for Non-Affine Root Systems / I. Cherednik, K. Schneider // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148985
record_format dspace
spelling irk-123456789-1489852019-02-20T01:23:29Z Non-Gatherable Triples for Non-Affine Root Systems Cherednik, I. Schneider, K. This paper contains a complete description of minimal non-gatherable triangle triples in the lambda-sequences for the classical root systems, F₄ and E₆. Such sequences are associated with reduced decompositions (words) in affine and non-affine Weyl groups. The existence of the non-gatherable triples is a combinatorial obstacle for using the technique of intertwiners for an explicit description of the irreducible representations of the (double) affine Hecke algebras, complementary to their algebraic-geometric theory. 2008 Article Non-Gatherable Triples for Non-Affine Root Systems / I. Cherednik, K. Schneider // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 7 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 20H15; 20F55 http://dspace.nbuv.gov.ua/handle/123456789/148985 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description This paper contains a complete description of minimal non-gatherable triangle triples in the lambda-sequences for the classical root systems, F₄ and E₆. Such sequences are associated with reduced decompositions (words) in affine and non-affine Weyl groups. The existence of the non-gatherable triples is a combinatorial obstacle for using the technique of intertwiners for an explicit description of the irreducible representations of the (double) affine Hecke algebras, complementary to their algebraic-geometric theory.
format Article
author Cherednik, I.
Schneider, K.
spellingShingle Cherednik, I.
Schneider, K.
Non-Gatherable Triples for Non-Affine Root Systems
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Cherednik, I.
Schneider, K.
author_sort Cherednik, I.
title Non-Gatherable Triples for Non-Affine Root Systems
title_short Non-Gatherable Triples for Non-Affine Root Systems
title_full Non-Gatherable Triples for Non-Affine Root Systems
title_fullStr Non-Gatherable Triples for Non-Affine Root Systems
title_full_unstemmed Non-Gatherable Triples for Non-Affine Root Systems
title_sort non-gatherable triples for non-affine root systems
publisher Інститут математики НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/148985
citation_txt Non-Gatherable Triples for Non-Affine Root Systems / I. Cherednik, K. Schneider // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 7 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT cheredniki nongatherabletriplesfornonaffinerootsystems
AT schneiderk nongatherabletriplesfornonaffinerootsystems
first_indexed 2023-05-20T17:31:35Z
last_indexed 2023-05-20T17:31:35Z
_version_ 1796153492136525824