Inversion Formulas for the Dunkl Intertwining Operator and Its Dual on Spaces of Functions and Distributions

In this paper we prove inversion formulas for the Dunkl intertwining operator Vk and for its dual tVk and we deduce the expression of the representing distributions of the inverse operators Vk⁻¹ and tVk⁻¹, and we give some applications.

Збережено в:
Бібліографічні деталі
Дата:2008
Автор: Trimèche, K.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148994
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Inversion Formulas for the Dunkl Intertwining Operator and Its Dual on Spaces of Functions and Distributions / K. Trimèche // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148994
record_format dspace
spelling irk-123456789-1489942019-02-20T01:26:14Z Inversion Formulas for the Dunkl Intertwining Operator and Its Dual on Spaces of Functions and Distributions Trimèche, K. In this paper we prove inversion formulas for the Dunkl intertwining operator Vk and for its dual tVk and we deduce the expression of the representing distributions of the inverse operators Vk⁻¹ and tVk⁻¹, and we give some applications. 2008 Article Inversion Formulas for the Dunkl Intertwining Operator and Its Dual on Spaces of Functions and Distributions / K. Trimèche // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 17 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 33C80; 43A32; 44A35; 51F15 http://dspace.nbuv.gov.ua/handle/123456789/148994 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper we prove inversion formulas for the Dunkl intertwining operator Vk and for its dual tVk and we deduce the expression of the representing distributions of the inverse operators Vk⁻¹ and tVk⁻¹, and we give some applications.
format Article
author Trimèche, K.
spellingShingle Trimèche, K.
Inversion Formulas for the Dunkl Intertwining Operator and Its Dual on Spaces of Functions and Distributions
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Trimèche, K.
author_sort Trimèche, K.
title Inversion Formulas for the Dunkl Intertwining Operator and Its Dual on Spaces of Functions and Distributions
title_short Inversion Formulas for the Dunkl Intertwining Operator and Its Dual on Spaces of Functions and Distributions
title_full Inversion Formulas for the Dunkl Intertwining Operator and Its Dual on Spaces of Functions and Distributions
title_fullStr Inversion Formulas for the Dunkl Intertwining Operator and Its Dual on Spaces of Functions and Distributions
title_full_unstemmed Inversion Formulas for the Dunkl Intertwining Operator and Its Dual on Spaces of Functions and Distributions
title_sort inversion formulas for the dunkl intertwining operator and its dual on spaces of functions and distributions
publisher Інститут математики НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/148994
citation_txt Inversion Formulas for the Dunkl Intertwining Operator and Its Dual on Spaces of Functions and Distributions / K. Trimèche // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 17 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT trimechek inversionformulasforthedunklintertwiningoperatoranditsdualonspacesoffunctionsanddistributions
first_indexed 2023-05-20T17:31:36Z
last_indexed 2023-05-20T17:31:36Z
_version_ 1796153498707951616