Affine Poisson Groups and WZW Model
We give a detailed description of a dynamical system which enjoys a Poisson-Lie symmetry with two non-isomorphic dual groups. The system is obtained by taking the q → ∞ limit of the q-deformed WZW model and the understanding of its symmetry structure results in uncovering an interesting duality of i...
Збережено в:
Дата: | 2008 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2008
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148997 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Affine Poisson Groups and WZW Model / C. Klimcík // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148997 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1489972019-02-20T01:26:16Z Affine Poisson Groups and WZW Model Klimcík, C. We give a detailed description of a dynamical system which enjoys a Poisson-Lie symmetry with two non-isomorphic dual groups. The system is obtained by taking the q → ∞ limit of the q-deformed WZW model and the understanding of its symmetry structure results in uncovering an interesting duality of its exchange relations. 2008 Article Affine Poisson Groups and WZW Model / C. Klimcík // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 11 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81T40 http://dspace.nbuv.gov.ua/handle/123456789/148997 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We give a detailed description of a dynamical system which enjoys a Poisson-Lie symmetry with two non-isomorphic dual groups. The system is obtained by taking the q → ∞ limit of the q-deformed WZW model and the understanding of its symmetry structure results in uncovering an interesting duality of its exchange relations. |
format |
Article |
author |
Klimcík, C. |
spellingShingle |
Klimcík, C. Affine Poisson Groups and WZW Model Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Klimcík, C. |
author_sort |
Klimcík, C. |
title |
Affine Poisson Groups and WZW Model |
title_short |
Affine Poisson Groups and WZW Model |
title_full |
Affine Poisson Groups and WZW Model |
title_fullStr |
Affine Poisson Groups and WZW Model |
title_full_unstemmed |
Affine Poisson Groups and WZW Model |
title_sort |
affine poisson groups and wzw model |
publisher |
Інститут математики НАН України |
publishDate |
2008 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148997 |
citation_txt |
Affine Poisson Groups and WZW Model / C. Klimcík // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 11 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT klimcikc affinepoissongroupsandwzwmodel |
first_indexed |
2023-05-20T17:31:58Z |
last_indexed |
2023-05-20T17:31:58Z |
_version_ |
1796153517141917696 |