Affine Poisson Groups and WZW Model

We give a detailed description of a dynamical system which enjoys a Poisson-Lie symmetry with two non-isomorphic dual groups. The system is obtained by taking the q → ∞ limit of the q-deformed WZW model and the understanding of its symmetry structure results in uncovering an interesting duality of i...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автор: Klimcík, C.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148997
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Affine Poisson Groups and WZW Model / C. Klimcík // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148997
record_format dspace
spelling irk-123456789-1489972019-02-20T01:26:16Z Affine Poisson Groups and WZW Model Klimcík, C. We give a detailed description of a dynamical system which enjoys a Poisson-Lie symmetry with two non-isomorphic dual groups. The system is obtained by taking the q → ∞ limit of the q-deformed WZW model and the understanding of its symmetry structure results in uncovering an interesting duality of its exchange relations. 2008 Article Affine Poisson Groups and WZW Model / C. Klimcík // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 11 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81T40 http://dspace.nbuv.gov.ua/handle/123456789/148997 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We give a detailed description of a dynamical system which enjoys a Poisson-Lie symmetry with two non-isomorphic dual groups. The system is obtained by taking the q → ∞ limit of the q-deformed WZW model and the understanding of its symmetry structure results in uncovering an interesting duality of its exchange relations.
format Article
author Klimcík, C.
spellingShingle Klimcík, C.
Affine Poisson Groups and WZW Model
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Klimcík, C.
author_sort Klimcík, C.
title Affine Poisson Groups and WZW Model
title_short Affine Poisson Groups and WZW Model
title_full Affine Poisson Groups and WZW Model
title_fullStr Affine Poisson Groups and WZW Model
title_full_unstemmed Affine Poisson Groups and WZW Model
title_sort affine poisson groups and wzw model
publisher Інститут математики НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/148997
citation_txt Affine Poisson Groups and WZW Model / C. Klimcík // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 11 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT klimcikc affinepoissongroupsandwzwmodel
first_indexed 2023-05-20T17:31:58Z
last_indexed 2023-05-20T17:31:58Z
_version_ 1796153517141917696