Deligne-Beilinson Cohomology and Abelian Link Invariants
For the Abelian Chern-Simons field theory, we consider the quantum functional integration over the Deligne-Beilinson cohomology classes and we derive the main properties of the observables in a generic closed orientable 3-manifold. We present an explicit path-integral non-perturbative computation of...
Збережено в:
Дата: | 2008 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2008
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148999 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Deligne-Beilinson Cohomology and Abelian Link Invariants / E. Guadagnini, F. Thuillier // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 41 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | For the Abelian Chern-Simons field theory, we consider the quantum functional integration over the Deligne-Beilinson cohomology classes and we derive the main properties of the observables in a generic closed orientable 3-manifold. We present an explicit path-integral non-perturbative computation of the Chern-Simons link invariants in the case of the torsion-free 3-manifolds S³, S¹ × S² and S¹ × Σg. |
---|