Deligne-Beilinson Cohomology and Abelian Link Invariants
For the Abelian Chern-Simons field theory, we consider the quantum functional integration over the Deligne-Beilinson cohomology classes and we derive the main properties of the observables in a generic closed orientable 3-manifold. We present an explicit path-integral non-perturbative computation of...
Збережено в:
Дата: | 2008 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2008
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148999 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Deligne-Beilinson Cohomology and Abelian Link Invariants / E. Guadagnini, F. Thuillier // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 41 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148999 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1489992019-02-20T01:24:34Z Deligne-Beilinson Cohomology and Abelian Link Invariants Guadagnini, E. Thuillier, F. For the Abelian Chern-Simons field theory, we consider the quantum functional integration over the Deligne-Beilinson cohomology classes and we derive the main properties of the observables in a generic closed orientable 3-manifold. We present an explicit path-integral non-perturbative computation of the Chern-Simons link invariants in the case of the torsion-free 3-manifolds S³, S¹ × S² and S¹ × Σg. 2008 Article Deligne-Beilinson Cohomology and Abelian Link Invariants / E. Guadagnini, F. Thuillier // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 41 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81T70; 14F43; 57M27 http://dspace.nbuv.gov.ua/handle/123456789/148999 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
For the Abelian Chern-Simons field theory, we consider the quantum functional integration over the Deligne-Beilinson cohomology classes and we derive the main properties of the observables in a generic closed orientable 3-manifold. We present an explicit path-integral non-perturbative computation of the Chern-Simons link invariants in the case of the torsion-free 3-manifolds S³, S¹ × S² and S¹ × Σg. |
format |
Article |
author |
Guadagnini, E. Thuillier, F. |
spellingShingle |
Guadagnini, E. Thuillier, F. Deligne-Beilinson Cohomology and Abelian Link Invariants Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Guadagnini, E. Thuillier, F. |
author_sort |
Guadagnini, E. |
title |
Deligne-Beilinson Cohomology and Abelian Link Invariants |
title_short |
Deligne-Beilinson Cohomology and Abelian Link Invariants |
title_full |
Deligne-Beilinson Cohomology and Abelian Link Invariants |
title_fullStr |
Deligne-Beilinson Cohomology and Abelian Link Invariants |
title_full_unstemmed |
Deligne-Beilinson Cohomology and Abelian Link Invariants |
title_sort |
deligne-beilinson cohomology and abelian link invariants |
publisher |
Інститут математики НАН України |
publishDate |
2008 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148999 |
citation_txt |
Deligne-Beilinson Cohomology and Abelian Link Invariants / E. Guadagnini, F. Thuillier // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 41 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT guadagninie delignebeilinsoncohomologyandabelianlinkinvariants AT thuillierf delignebeilinsoncohomologyandabelianlinkinvariants |
first_indexed |
2023-05-20T17:31:36Z |
last_indexed |
2023-05-20T17:31:36Z |
_version_ |
1796153492242432000 |