Deligne-Beilinson Cohomology and Abelian Link Invariants

For the Abelian Chern-Simons field theory, we consider the quantum functional integration over the Deligne-Beilinson cohomology classes and we derive the main properties of the observables in a generic closed orientable 3-manifold. We present an explicit path-integral non-perturbative computation of...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Guadagnini, E., Thuillier, F.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148999
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Deligne-Beilinson Cohomology and Abelian Link Invariants / E. Guadagnini, F. Thuillier // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 41 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148999
record_format dspace
spelling irk-123456789-1489992019-02-20T01:24:34Z Deligne-Beilinson Cohomology and Abelian Link Invariants Guadagnini, E. Thuillier, F. For the Abelian Chern-Simons field theory, we consider the quantum functional integration over the Deligne-Beilinson cohomology classes and we derive the main properties of the observables in a generic closed orientable 3-manifold. We present an explicit path-integral non-perturbative computation of the Chern-Simons link invariants in the case of the torsion-free 3-manifolds S³, S¹ × S² and S¹ × Σg. 2008 Article Deligne-Beilinson Cohomology and Abelian Link Invariants / E. Guadagnini, F. Thuillier // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 41 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81T70; 14F43; 57M27 http://dspace.nbuv.gov.ua/handle/123456789/148999 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description For the Abelian Chern-Simons field theory, we consider the quantum functional integration over the Deligne-Beilinson cohomology classes and we derive the main properties of the observables in a generic closed orientable 3-manifold. We present an explicit path-integral non-perturbative computation of the Chern-Simons link invariants in the case of the torsion-free 3-manifolds S³, S¹ × S² and S¹ × Σg.
format Article
author Guadagnini, E.
Thuillier, F.
spellingShingle Guadagnini, E.
Thuillier, F.
Deligne-Beilinson Cohomology and Abelian Link Invariants
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Guadagnini, E.
Thuillier, F.
author_sort Guadagnini, E.
title Deligne-Beilinson Cohomology and Abelian Link Invariants
title_short Deligne-Beilinson Cohomology and Abelian Link Invariants
title_full Deligne-Beilinson Cohomology and Abelian Link Invariants
title_fullStr Deligne-Beilinson Cohomology and Abelian Link Invariants
title_full_unstemmed Deligne-Beilinson Cohomology and Abelian Link Invariants
title_sort deligne-beilinson cohomology and abelian link invariants
publisher Інститут математики НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/148999
citation_txt Deligne-Beilinson Cohomology and Abelian Link Invariants / E. Guadagnini, F. Thuillier // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 41 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT guadagninie delignebeilinsoncohomologyandabelianlinkinvariants
AT thuillierf delignebeilinsoncohomologyandabelianlinkinvariants
first_indexed 2023-05-20T17:31:36Z
last_indexed 2023-05-20T17:31:36Z
_version_ 1796153492242432000