On Miura Transformations and Volterra-Type Equations Associated with the Adler-Bobenko-Suris Equations

We construct Miura transformations mapping the scalar spectral problems of the integrable lattice equations belonging to the Adler-Bobenko-Suris (ABS) list into the discrete Schrödinger spectral problem associated with Volterra-type equations. We show that the ABS equations correspond to Bäcklund tr...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Levi, D., Petrera, M., Scimiterna, C., Yamilov, R.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149004
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On Miura Transformations and Volterra-Type Equations Associated with the Adler-Bobenko-Suris Equations / D. Levi, M. Petrera, C. Scimiterna, R. Yamilov // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 31 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149004
record_format dspace
spelling irk-123456789-1490042019-02-21T01:23:16Z On Miura Transformations and Volterra-Type Equations Associated with the Adler-Bobenko-Suris Equations Levi, D. Petrera, M. Scimiterna, C. Yamilov, R. We construct Miura transformations mapping the scalar spectral problems of the integrable lattice equations belonging to the Adler-Bobenko-Suris (ABS) list into the discrete Schrödinger spectral problem associated with Volterra-type equations. We show that the ABS equations correspond to Bäcklund transformations for some particular cases of the discrete Krichever-Novikov equation found by Yamilov (YdKN equation). This enables us to construct new generalized symmetries for the ABS equations. The same can be said about the generalizations of the ABS equations introduced by Tongas, Tsoubelis and Xenitidis. All of them generate Bäcklund transformations for the YdKN equation. The higher order generalized symmetries we construct in the present paper confirm their integrability. 2008 Article On Miura Transformations and Volterra-Type Equations Associated with the Adler-Bobenko-Suris Equations / D. Levi, M. Petrera, C. Scimiterna, R. Yamilov // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 31 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 37K10; 37L20; 39A05 http://dspace.nbuv.gov.ua/handle/123456789/149004 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We construct Miura transformations mapping the scalar spectral problems of the integrable lattice equations belonging to the Adler-Bobenko-Suris (ABS) list into the discrete Schrödinger spectral problem associated with Volterra-type equations. We show that the ABS equations correspond to Bäcklund transformations for some particular cases of the discrete Krichever-Novikov equation found by Yamilov (YdKN equation). This enables us to construct new generalized symmetries for the ABS equations. The same can be said about the generalizations of the ABS equations introduced by Tongas, Tsoubelis and Xenitidis. All of them generate Bäcklund transformations for the YdKN equation. The higher order generalized symmetries we construct in the present paper confirm their integrability.
format Article
author Levi, D.
Petrera, M.
Scimiterna, C.
Yamilov, R.
spellingShingle Levi, D.
Petrera, M.
Scimiterna, C.
Yamilov, R.
On Miura Transformations and Volterra-Type Equations Associated with the Adler-Bobenko-Suris Equations
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Levi, D.
Petrera, M.
Scimiterna, C.
Yamilov, R.
author_sort Levi, D.
title On Miura Transformations and Volterra-Type Equations Associated with the Adler-Bobenko-Suris Equations
title_short On Miura Transformations and Volterra-Type Equations Associated with the Adler-Bobenko-Suris Equations
title_full On Miura Transformations and Volterra-Type Equations Associated with the Adler-Bobenko-Suris Equations
title_fullStr On Miura Transformations and Volterra-Type Equations Associated with the Adler-Bobenko-Suris Equations
title_full_unstemmed On Miura Transformations and Volterra-Type Equations Associated with the Adler-Bobenko-Suris Equations
title_sort on miura transformations and volterra-type equations associated with the adler-bobenko-suris equations
publisher Інститут математики НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/149004
citation_txt On Miura Transformations and Volterra-Type Equations Associated with the Adler-Bobenko-Suris Equations / D. Levi, M. Petrera, C. Scimiterna, R. Yamilov // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 31 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT levid onmiuratransformationsandvolterratypeequationsassociatedwiththeadlerbobenkosurisequations
AT petreram onmiuratransformationsandvolterratypeequationsassociatedwiththeadlerbobenkosurisequations
AT scimiternac onmiuratransformationsandvolterratypeequationsassociatedwiththeadlerbobenkosurisequations
AT yamilovr onmiuratransformationsandvolterratypeequationsassociatedwiththeadlerbobenkosurisequations
first_indexed 2023-05-20T17:31:36Z
last_indexed 2023-05-20T17:31:36Z
_version_ 1796153499022524416