Solutions Classification to the Extended Reduced Ostrovsky Equation

An alternative to the Parkes' approach [SIGMA 4 (2008), 053, 17 pages] is suggested for the solutions categorization to the extended reduced Ostrovsky equation (the exROE in Parkes' terminology). The approach is based on the application of the qualitative theory of differential equations w...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автор: Stepanyants, Y.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149006
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Solutions Classification to the Extended Reduced Ostrovsky Equation / Y.A. Stepanyants // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149006
record_format dspace
spelling irk-123456789-1490062019-02-20T01:24:30Z Solutions Classification to the Extended Reduced Ostrovsky Equation Stepanyants, Y.A. An alternative to the Parkes' approach [SIGMA 4 (2008), 053, 17 pages] is suggested for the solutions categorization to the extended reduced Ostrovsky equation (the exROE in Parkes' terminology). The approach is based on the application of the qualitative theory of differential equations which includes a mechanical analogy with the point particle motion in a potential field, the phase plane method, analysis of homoclinic trajectories and the like. Such an approach is seemed more vivid and free of some restrictions contained in [SIGMA 4 (2008), 053, 17 pages]. 2008 Article Solutions Classification to the Extended Reduced Ostrovsky Equation / Y.A. Stepanyants // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 5 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 35Q58; 35Q53; 35C05 http://dspace.nbuv.gov.ua/handle/123456789/149006 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description An alternative to the Parkes' approach [SIGMA 4 (2008), 053, 17 pages] is suggested for the solutions categorization to the extended reduced Ostrovsky equation (the exROE in Parkes' terminology). The approach is based on the application of the qualitative theory of differential equations which includes a mechanical analogy with the point particle motion in a potential field, the phase plane method, analysis of homoclinic trajectories and the like. Such an approach is seemed more vivid and free of some restrictions contained in [SIGMA 4 (2008), 053, 17 pages].
format Article
author Stepanyants, Y.A.
spellingShingle Stepanyants, Y.A.
Solutions Classification to the Extended Reduced Ostrovsky Equation
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Stepanyants, Y.A.
author_sort Stepanyants, Y.A.
title Solutions Classification to the Extended Reduced Ostrovsky Equation
title_short Solutions Classification to the Extended Reduced Ostrovsky Equation
title_full Solutions Classification to the Extended Reduced Ostrovsky Equation
title_fullStr Solutions Classification to the Extended Reduced Ostrovsky Equation
title_full_unstemmed Solutions Classification to the Extended Reduced Ostrovsky Equation
title_sort solutions classification to the extended reduced ostrovsky equation
publisher Інститут математики НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/149006
citation_txt Solutions Classification to the Extended Reduced Ostrovsky Equation / Y.A. Stepanyants // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 5 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT stepanyantsya solutionsclassificationtotheextendedreducedostrovskyequation
first_indexed 2023-05-20T17:31:36Z
last_indexed 2023-05-20T17:31:36Z
_version_ 1796153499128430592