Projections of Singular Vectors of Verma Modules over Rank 2 Kac-Moody Lie Algebras

We prove an explicit formula for a projection of singular vectors in the Verma module over a rank 2 Kac-Moody Lie algebra onto the universal enveloping algebra of the Heisenberg Lie algebra and of sl2 (Theorem 3). The formula is derived from a more general but less explicit formula due to Feigin, Fu...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Fuchs, D., Wilmarth, C.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149013
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Projections of Singular Vectors of Verma Modules over Rank 2 Kac-Moody Lie Algebras / D. Fuchs, C. Wilmarth // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 6 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149013
record_format dspace
spelling irk-123456789-1490132019-02-20T01:27:04Z Projections of Singular Vectors of Verma Modules over Rank 2 Kac-Moody Lie Algebras Fuchs, D. Wilmarth, C. We prove an explicit formula for a projection of singular vectors in the Verma module over a rank 2 Kac-Moody Lie algebra onto the universal enveloping algebra of the Heisenberg Lie algebra and of sl2 (Theorem 3). The formula is derived from a more general but less explicit formula due to Feigin, Fuchs and Malikov [Funct. Anal. Appl. 20 (1986), no. 2, 103–113]. In the simpler case of A11 the formula was obtained in [Fuchs D., Funct. Anal. Appl. 23 (1989), no. 2, 154–156]. 2008 Article Projections of Singular Vectors of Verma Modules over Rank 2 Kac-Moody Lie Algebras / D. Fuchs, C. Wilmarth // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 6 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 17B67 http://dspace.nbuv.gov.ua/handle/123456789/149013 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We prove an explicit formula for a projection of singular vectors in the Verma module over a rank 2 Kac-Moody Lie algebra onto the universal enveloping algebra of the Heisenberg Lie algebra and of sl2 (Theorem 3). The formula is derived from a more general but less explicit formula due to Feigin, Fuchs and Malikov [Funct. Anal. Appl. 20 (1986), no. 2, 103–113]. In the simpler case of A11 the formula was obtained in [Fuchs D., Funct. Anal. Appl. 23 (1989), no. 2, 154–156].
format Article
author Fuchs, D.
Wilmarth, C.
spellingShingle Fuchs, D.
Wilmarth, C.
Projections of Singular Vectors of Verma Modules over Rank 2 Kac-Moody Lie Algebras
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Fuchs, D.
Wilmarth, C.
author_sort Fuchs, D.
title Projections of Singular Vectors of Verma Modules over Rank 2 Kac-Moody Lie Algebras
title_short Projections of Singular Vectors of Verma Modules over Rank 2 Kac-Moody Lie Algebras
title_full Projections of Singular Vectors of Verma Modules over Rank 2 Kac-Moody Lie Algebras
title_fullStr Projections of Singular Vectors of Verma Modules over Rank 2 Kac-Moody Lie Algebras
title_full_unstemmed Projections of Singular Vectors of Verma Modules over Rank 2 Kac-Moody Lie Algebras
title_sort projections of singular vectors of verma modules over rank 2 kac-moody lie algebras
publisher Інститут математики НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/149013
citation_txt Projections of Singular Vectors of Verma Modules over Rank 2 Kac-Moody Lie Algebras / D. Fuchs, C. Wilmarth // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 6 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT fuchsd projectionsofsingularvectorsofvermamodulesoverrank2kacmoodyliealgebras
AT wilmarthc projectionsofsingularvectorsofvermamodulesoverrank2kacmoodyliealgebras
first_indexed 2023-05-20T17:31:59Z
last_indexed 2023-05-20T17:31:59Z
_version_ 1796153499547860992