Projections of Singular Vectors of Verma Modules over Rank 2 Kac-Moody Lie Algebras
We prove an explicit formula for a projection of singular vectors in the Verma module over a rank 2 Kac-Moody Lie algebra onto the universal enveloping algebra of the Heisenberg Lie algebra and of sl2 (Theorem 3). The formula is derived from a more general but less explicit formula due to Feigin, Fu...
Збережено в:
Дата: | 2008 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2008
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149013 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Projections of Singular Vectors of Verma Modules over Rank 2 Kac-Moody Lie Algebras / D. Fuchs, C. Wilmarth // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 6 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149013 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1490132019-02-20T01:27:04Z Projections of Singular Vectors of Verma Modules over Rank 2 Kac-Moody Lie Algebras Fuchs, D. Wilmarth, C. We prove an explicit formula for a projection of singular vectors in the Verma module over a rank 2 Kac-Moody Lie algebra onto the universal enveloping algebra of the Heisenberg Lie algebra and of sl2 (Theorem 3). The formula is derived from a more general but less explicit formula due to Feigin, Fuchs and Malikov [Funct. Anal. Appl. 20 (1986), no. 2, 103–113]. In the simpler case of A11 the formula was obtained in [Fuchs D., Funct. Anal. Appl. 23 (1989), no. 2, 154–156]. 2008 Article Projections of Singular Vectors of Verma Modules over Rank 2 Kac-Moody Lie Algebras / D. Fuchs, C. Wilmarth // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 6 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 17B67 http://dspace.nbuv.gov.ua/handle/123456789/149013 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We prove an explicit formula for a projection of singular vectors in the Verma module over a rank 2 Kac-Moody Lie algebra onto the universal enveloping algebra of the Heisenberg Lie algebra and of sl2 (Theorem 3). The formula is derived from a more general but less explicit formula due to Feigin, Fuchs and Malikov [Funct. Anal. Appl. 20 (1986), no. 2, 103–113]. In the simpler case of A11 the formula was obtained in [Fuchs D., Funct. Anal. Appl. 23 (1989), no. 2, 154–156]. |
format |
Article |
author |
Fuchs, D. Wilmarth, C. |
spellingShingle |
Fuchs, D. Wilmarth, C. Projections of Singular Vectors of Verma Modules over Rank 2 Kac-Moody Lie Algebras Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Fuchs, D. Wilmarth, C. |
author_sort |
Fuchs, D. |
title |
Projections of Singular Vectors of Verma Modules over Rank 2 Kac-Moody Lie Algebras |
title_short |
Projections of Singular Vectors of Verma Modules over Rank 2 Kac-Moody Lie Algebras |
title_full |
Projections of Singular Vectors of Verma Modules over Rank 2 Kac-Moody Lie Algebras |
title_fullStr |
Projections of Singular Vectors of Verma Modules over Rank 2 Kac-Moody Lie Algebras |
title_full_unstemmed |
Projections of Singular Vectors of Verma Modules over Rank 2 Kac-Moody Lie Algebras |
title_sort |
projections of singular vectors of verma modules over rank 2 kac-moody lie algebras |
publisher |
Інститут математики НАН України |
publishDate |
2008 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149013 |
citation_txt |
Projections of Singular Vectors of Verma Modules over Rank 2 Kac-Moody Lie Algebras / D. Fuchs, C. Wilmarth // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 6 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT fuchsd projectionsofsingularvectorsofvermamodulesoverrank2kacmoodyliealgebras AT wilmarthc projectionsofsingularvectorsofvermamodulesoverrank2kacmoodyliealgebras |
first_indexed |
2023-05-20T17:31:59Z |
last_indexed |
2023-05-20T17:31:59Z |
_version_ |
1796153499547860992 |