Hochschild Homology and Cohomology of Klein Surfaces
Within the framework of deformation quantization, a first step towards the study of star-products is the calculation of Hochschild cohomology. The aim of this article is precisely to determine the Hochschild homology and cohomology in two cases of algebraic varieties. On the one hand, we consider si...
Збережено в:
Дата: | 2008 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2008
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149019 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Hochschild Homology and Cohomology of Klein Surfaces / F. Butin // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 18 назв. — англ. |
Репозиторії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149019 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1490192019-02-20T01:25:11Z Hochschild Homology and Cohomology of Klein Surfaces Butin, F. Within the framework of deformation quantization, a first step towards the study of star-products is the calculation of Hochschild cohomology. The aim of this article is precisely to determine the Hochschild homology and cohomology in two cases of algebraic varieties. On the one hand, we consider singular curves of the plane; here we recover, in a different way, a result proved by Fronsdal and make it more precise. On the other hand, we are interested in Klein surfaces. The use of a complex suggested by Kontsevich and the help of Groebner bases allow us to solve the problem. 2008 Article Hochschild Homology and Cohomology of Klein Surfaces / F. Butin // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 18 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 53D55; 13D03; 30F50; 13P10 http://dspace.nbuv.gov.ua/handle/123456789/149019 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Within the framework of deformation quantization, a first step towards the study of star-products is the calculation of Hochschild cohomology. The aim of this article is precisely to determine the Hochschild homology and cohomology in two cases of algebraic varieties. On the one hand, we consider singular curves of the plane; here we recover, in a different way, a result proved by Fronsdal and make it more precise. On the other hand, we are interested in Klein surfaces. The use of a complex suggested by Kontsevich and the help of Groebner bases allow us to solve the problem. |
format |
Article |
author |
Butin, F. |
spellingShingle |
Butin, F. Hochschild Homology and Cohomology of Klein Surfaces Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Butin, F. |
author_sort |
Butin, F. |
title |
Hochschild Homology and Cohomology of Klein Surfaces |
title_short |
Hochschild Homology and Cohomology of Klein Surfaces |
title_full |
Hochschild Homology and Cohomology of Klein Surfaces |
title_fullStr |
Hochschild Homology and Cohomology of Klein Surfaces |
title_full_unstemmed |
Hochschild Homology and Cohomology of Klein Surfaces |
title_sort |
hochschild homology and cohomology of klein surfaces |
publisher |
Інститут математики НАН України |
publishDate |
2008 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149019 |
citation_txt |
Hochschild Homology and Cohomology of Klein Surfaces / F. Butin // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 18 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT butinf hochschildhomologyandcohomologyofkleinsurfaces |
first_indexed |
2023-05-20T17:31:38Z |
last_indexed |
2023-05-20T17:31:38Z |
_version_ |
1796153500181200896 |