Hochschild Homology and Cohomology of Klein Surfaces

Within the framework of deformation quantization, a first step towards the study of star-products is the calculation of Hochschild cohomology. The aim of this article is precisely to determine the Hochschild homology and cohomology in two cases of algebraic varieties. On the one hand, we consider si...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автор: Butin, F.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149019
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Hochschild Homology and Cohomology of Klein Surfaces / F. Butin // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 18 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149019
record_format dspace
spelling irk-123456789-1490192019-02-20T01:25:11Z Hochschild Homology and Cohomology of Klein Surfaces Butin, F. Within the framework of deformation quantization, a first step towards the study of star-products is the calculation of Hochschild cohomology. The aim of this article is precisely to determine the Hochschild homology and cohomology in two cases of algebraic varieties. On the one hand, we consider singular curves of the plane; here we recover, in a different way, a result proved by Fronsdal and make it more precise. On the other hand, we are interested in Klein surfaces. The use of a complex suggested by Kontsevich and the help of Groebner bases allow us to solve the problem. 2008 Article Hochschild Homology and Cohomology of Klein Surfaces / F. Butin // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 18 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 53D55; 13D03; 30F50; 13P10 http://dspace.nbuv.gov.ua/handle/123456789/149019 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Within the framework of deformation quantization, a first step towards the study of star-products is the calculation of Hochschild cohomology. The aim of this article is precisely to determine the Hochschild homology and cohomology in two cases of algebraic varieties. On the one hand, we consider singular curves of the plane; here we recover, in a different way, a result proved by Fronsdal and make it more precise. On the other hand, we are interested in Klein surfaces. The use of a complex suggested by Kontsevich and the help of Groebner bases allow us to solve the problem.
format Article
author Butin, F.
spellingShingle Butin, F.
Hochschild Homology and Cohomology of Klein Surfaces
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Butin, F.
author_sort Butin, F.
title Hochschild Homology and Cohomology of Klein Surfaces
title_short Hochschild Homology and Cohomology of Klein Surfaces
title_full Hochschild Homology and Cohomology of Klein Surfaces
title_fullStr Hochschild Homology and Cohomology of Klein Surfaces
title_full_unstemmed Hochschild Homology and Cohomology of Klein Surfaces
title_sort hochschild homology and cohomology of klein surfaces
publisher Інститут математики НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/149019
citation_txt Hochschild Homology and Cohomology of Klein Surfaces / F. Butin // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 18 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT butinf hochschildhomologyandcohomologyofkleinsurfaces
first_indexed 2023-05-20T17:31:38Z
last_indexed 2023-05-20T17:31:38Z
_version_ 1796153500181200896