Shoikhet's Conjecture and Duflo Isomorphism on (Co)Invariants
In this paper we prove a conjecture of B. Shoikhet. This conjecture states that the tangent isomorphism on homology, between the Poisson homology associated to a Poisson structure on Rd and the Hochschild homology of its quantized star-product algebra, is an isomorphism of modules over the (isomorph...
Збережено в:
Дата: | 2008 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2008
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149022 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Shoikhet's Conjecture and Duflo Isomorphism on (Co)Invariants / D. Calaque and C.A. Rossi // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 13 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149022 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1490222019-02-20T01:27:08Z Shoikhet's Conjecture and Duflo Isomorphism on (Co)Invariants Calaque, D. Rossi, C.A. In this paper we prove a conjecture of B. Shoikhet. This conjecture states that the tangent isomorphism on homology, between the Poisson homology associated to a Poisson structure on Rd and the Hochschild homology of its quantized star-product algebra, is an isomorphism of modules over the (isomorphic) respective cohomology algebras. As a consequence, we obtain a version of the Duflo isomorphism on coinvariants. 2008 Article Shoikhet's Conjecture and Duflo Isomorphism on (Co)Invariants / D. Calaque and C.A. Rossi // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 13 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 16E45; 16E40; 81Q30 http://dspace.nbuv.gov.ua/handle/123456789/149022 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In this paper we prove a conjecture of B. Shoikhet. This conjecture states that the tangent isomorphism on homology, between the Poisson homology associated to a Poisson structure on Rd and the Hochschild homology of its quantized star-product algebra, is an isomorphism of modules over the (isomorphic) respective cohomology algebras. As a consequence, we obtain a version of the Duflo isomorphism on coinvariants. |
format |
Article |
author |
Calaque, D. Rossi, C.A. |
spellingShingle |
Calaque, D. Rossi, C.A. Shoikhet's Conjecture and Duflo Isomorphism on (Co)Invariants Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Calaque, D. Rossi, C.A. |
author_sort |
Calaque, D. |
title |
Shoikhet's Conjecture and Duflo Isomorphism on (Co)Invariants |
title_short |
Shoikhet's Conjecture and Duflo Isomorphism on (Co)Invariants |
title_full |
Shoikhet's Conjecture and Duflo Isomorphism on (Co)Invariants |
title_fullStr |
Shoikhet's Conjecture and Duflo Isomorphism on (Co)Invariants |
title_full_unstemmed |
Shoikhet's Conjecture and Duflo Isomorphism on (Co)Invariants |
title_sort |
shoikhet's conjecture and duflo isomorphism on (co)invariants |
publisher |
Інститут математики НАН України |
publishDate |
2008 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149022 |
citation_txt |
Shoikhet's Conjecture and Duflo Isomorphism on (Co)Invariants / D. Calaque and C.A. Rossi // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 13 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT calaqued shoikhetsconjectureanddufloisomorphismoncoinvariants AT rossica shoikhetsconjectureanddufloisomorphismoncoinvariants |
first_indexed |
2023-05-20T17:32:00Z |
last_indexed |
2023-05-20T17:32:00Z |
_version_ |
1796153500497870848 |