On Griess Algebras
In this paper we prove that for any commutative (but in general non-associative) algebra A with an invariant symmetric non-degenerate bilinear form there is a graded vertex algebra V = V₀ + V₂ + V₃ + ..., such that dim V₀ = 1 and V₂ contains A. We can choose V so that if A has a unit e, then 2e is t...
Збережено в:
Дата: | 2008 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2008
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149024 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On Griess Algebras / M. Roitman // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 27 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149024 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1490242019-02-20T01:28:35Z On Griess Algebras Roitman, M. In this paper we prove that for any commutative (but in general non-associative) algebra A with an invariant symmetric non-degenerate bilinear form there is a graded vertex algebra V = V₀ + V₂ + V₃ + ..., such that dim V₀ = 1 and V₂ contains A. We can choose V so that if A has a unit e, then 2e is the Virasoro element of V, and if G is a finite group of automorphisms of A, then G acts on V as well. In addition, the algebra V can be chosen with a non-degenerate invariant bilinear form, in which case it is simple. 2008 Article On Griess Algebras / M. Roitman // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 27 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 17B69 http://dspace.nbuv.gov.ua/handle/123456789/149024 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In this paper we prove that for any commutative (but in general non-associative) algebra A with an invariant symmetric non-degenerate bilinear form there is a graded vertex algebra V = V₀ + V₂ + V₃ + ..., such that dim V₀ = 1 and V₂ contains A. We can choose V so that if A has a unit e, then 2e is the Virasoro element of V, and if G is a finite group of automorphisms of A, then G acts on V as well. In addition, the algebra V can be chosen with a non-degenerate invariant bilinear form, in which case it is simple. |
format |
Article |
author |
Roitman, M. |
spellingShingle |
Roitman, M. On Griess Algebras Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Roitman, M. |
author_sort |
Roitman, M. |
title |
On Griess Algebras |
title_short |
On Griess Algebras |
title_full |
On Griess Algebras |
title_fullStr |
On Griess Algebras |
title_full_unstemmed |
On Griess Algebras |
title_sort |
on griess algebras |
publisher |
Інститут математики НАН України |
publishDate |
2008 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149024 |
citation_txt |
On Griess Algebras / M. Roitman // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 27 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT roitmanm ongriessalgebras |
first_indexed |
2023-05-20T17:32:00Z |
last_indexed |
2023-05-20T17:32:00Z |
_version_ |
1796153500708634624 |