On Griess Algebras

In this paper we prove that for any commutative (but in general non-associative) algebra A with an invariant symmetric non-degenerate bilinear form there is a graded vertex algebra V = V₀ + V₂ + V₃ + ..., such that dim V₀ = 1 and V₂ contains A. We can choose V so that if A has a unit e, then 2e is t...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автор: Roitman, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149024
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On Griess Algebras / M. Roitman // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 27 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149024
record_format dspace
spelling irk-123456789-1490242019-02-20T01:28:35Z On Griess Algebras Roitman, M. In this paper we prove that for any commutative (but in general non-associative) algebra A with an invariant symmetric non-degenerate bilinear form there is a graded vertex algebra V = V₀ + V₂ + V₃ + ..., such that dim V₀ = 1 and V₂ contains A. We can choose V so that if A has a unit e, then 2e is the Virasoro element of V, and if G is a finite group of automorphisms of A, then G acts on V as well. In addition, the algebra V can be chosen with a non-degenerate invariant bilinear form, in which case it is simple. 2008 Article On Griess Algebras / M. Roitman // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 27 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 17B69 http://dspace.nbuv.gov.ua/handle/123456789/149024 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper we prove that for any commutative (but in general non-associative) algebra A with an invariant symmetric non-degenerate bilinear form there is a graded vertex algebra V = V₀ + V₂ + V₃ + ..., such that dim V₀ = 1 and V₂ contains A. We can choose V so that if A has a unit e, then 2e is the Virasoro element of V, and if G is a finite group of automorphisms of A, then G acts on V as well. In addition, the algebra V can be chosen with a non-degenerate invariant bilinear form, in which case it is simple.
format Article
author Roitman, M.
spellingShingle Roitman, M.
On Griess Algebras
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Roitman, M.
author_sort Roitman, M.
title On Griess Algebras
title_short On Griess Algebras
title_full On Griess Algebras
title_fullStr On Griess Algebras
title_full_unstemmed On Griess Algebras
title_sort on griess algebras
publisher Інститут математики НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/149024
citation_txt On Griess Algebras / M. Roitman // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 27 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT roitmanm ongriessalgebras
first_indexed 2023-05-20T17:32:00Z
last_indexed 2023-05-20T17:32:00Z
_version_ 1796153500708634624