Tridiagonal Symmetries of Models of Nonequilibrium Physics

We study the boundary symmetries of models of nonequilibrium physics where the steady state behaviour strongly depends on the boundary rates. Within the matrix product state approach to many-body systems the physics is described in terms of matrices defining a noncommutative space with a quantum gro...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автор: Aneva, B.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149025
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Tridiagonal Symmetries of Models of Nonequilibrium Physics / B. Aneva // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 36 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149025
record_format dspace
spelling irk-123456789-1490252019-02-20T01:28:16Z Tridiagonal Symmetries of Models of Nonequilibrium Physics Aneva, B. We study the boundary symmetries of models of nonequilibrium physics where the steady state behaviour strongly depends on the boundary rates. Within the matrix product state approach to many-body systems the physics is described in terms of matrices defining a noncommutative space with a quantum group symmetry. Boundary processes lead to a reduction of the bulk symmetry. We argue that the boundary operators of an interacting system with simple exclusion generate a tridiagonal algebra whose irreducible representations are expressed in terms of the Askey-Wilson polynomials. We show that the boundary algebras of the symmetric and the totally asymmetric processes are the proper limits of the partially asymmetric ones. In all three type of processes the tridiagonal algebra arises as a symmetry of the boundary problem and allows for the exact solvability of the model. 2008 Article Tridiagonal Symmetries of Models of Nonequilibrium Physics / B. Aneva // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 36 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 82C10; 60J60; 17B80 http://dspace.nbuv.gov.ua/handle/123456789/149025 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We study the boundary symmetries of models of nonequilibrium physics where the steady state behaviour strongly depends on the boundary rates. Within the matrix product state approach to many-body systems the physics is described in terms of matrices defining a noncommutative space with a quantum group symmetry. Boundary processes lead to a reduction of the bulk symmetry. We argue that the boundary operators of an interacting system with simple exclusion generate a tridiagonal algebra whose irreducible representations are expressed in terms of the Askey-Wilson polynomials. We show that the boundary algebras of the symmetric and the totally asymmetric processes are the proper limits of the partially asymmetric ones. In all three type of processes the tridiagonal algebra arises as a symmetry of the boundary problem and allows for the exact solvability of the model.
format Article
author Aneva, B.
spellingShingle Aneva, B.
Tridiagonal Symmetries of Models of Nonequilibrium Physics
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Aneva, B.
author_sort Aneva, B.
title Tridiagonal Symmetries of Models of Nonequilibrium Physics
title_short Tridiagonal Symmetries of Models of Nonequilibrium Physics
title_full Tridiagonal Symmetries of Models of Nonequilibrium Physics
title_fullStr Tridiagonal Symmetries of Models of Nonequilibrium Physics
title_full_unstemmed Tridiagonal Symmetries of Models of Nonequilibrium Physics
title_sort tridiagonal symmetries of models of nonequilibrium physics
publisher Інститут математики НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/149025
citation_txt Tridiagonal Symmetries of Models of Nonequilibrium Physics / B. Aneva // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 36 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT anevab tridiagonalsymmetriesofmodelsofnonequilibriumphysics
first_indexed 2023-05-20T17:32:01Z
last_indexed 2023-05-20T17:32:01Z
_version_ 1796153500813492224